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The problem of getting irreducible *-representations 7 of Lie superalgebras B(0,n), n = 1,2, is
studied, starting with a recently constructed family of linear representations in terms of
differential operators on the space C 3 of C-valued C “-functions. Equivalent formulation via
creation-annihilation operators of a para-Bose system with » degrees of freedom is used, and
the domain . of any = is shown to be a subset of C ¥ containing a nonzero vacuum subspace.
By assuming its dimension finite, the necessary conditions for existence of 7 are derived. The
method is applied to the superalgebra B(0,1) and a one-parameter family IT of nonequivalent
irreducible *-representations in terms of unbounded linear operators on L 2(R*) ® C? is
obtained. Each representation 7€ll has a nondegenerated vacuum and for all zeB(0,1)
satisfying z = z*, the operators 7(z) are essentially self-adjoint.

1. INTRODUCTION

Recently, we have constructed for the Lie superalgebras
osp(1,2n), n = 1,2, families of infinite-dimensional linear
representations 2—Q"(z).!> The representations Q7
form a family depending on one parameter that can assume
any real value. The family of representations Q@ is labeled
by parameters N and «: N = 2,4,..., and « takes values in
some %, CR. For each zeosp(1,2n), the operator Q™ (z)
is a linear differential operator on C g (M, )—the space of
C> vector functions ®: M, Sx—->P(x)eC", where
M,:=R* (N=2forn = 1), and M, is some open subset of
R*XR2%

Under osp(1,2n), we understand the unique real form
of the complex Lie superalgebra (LSA) B(0,n). This LSA is
generated by 2n odd elements y;, / = + 1,..., + n; their sym-
metric products determine n(2n + 1) independent even ele-
ments

Xp: =Ky ) =Xy, (1.1a)
and the law of multiplication reads
(xjk’yl>:=gjlyk + &kt Vj» 811==Sgn(j)5j+1~ (1.1b)
By using the Jacobi identity, one gets
(X Xim ) = &t Xkm + &im¥ it + &k1Xjm + EimXit- (1.1¢)

The basis {x;,, y;: j,k/ = + 1,..., + n} will be called Racah
as its even part is identical with the basis of sp(2n,R).*

For discussing properties of representations ), it is con-
venient to regard the space A, of linear differential opera-
tors on C (M) as an associative *-algebra equipped with
adjoint operation “4#”,> and introduce the standard LSA
structure® on its linear subspace .«&/: = &, ® &, which is
determined via the Racah basis as

Ay =1{00x): jk = + Loy & 1l
oy ={Qy): I= +1,.,+n},,.

Basic features of the representations £ can now be sum-
marized as follows.
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(i) Each Q) is a homomorphism of osp(1,2n) on ., the
order of the differential operator (}(z) being at most 1ifz is
an odd element and at most 2 if z is even.

(ii) Let 2—>z* be the involution on B(0,n)7 defined as
the antilinear extension of

Xhi= — X, Y= —iy i={—1 (1.2)
Then one has®
0(z*) =Q(2)%, (1.3)

i.e., §) is a *-homomorphism. In particular, for elements of
the even subalgebra, sp(2n,R) holds x* = — x, so that
Q(x) is skew-symmetric:

Qx)*= —Q(x), xesp(2n,R).

(iii) All independent Casimir elements of osp(1,2n)
(there s just one for n = 1 and two for n = 2) are represent-
ed by multiples of unity in A, (Schur-irreducibility), the
parameters that label {2 being in one-to-one correspondence
with these numbers.

The main purpose of this paper is getting algebraically
irreducible® Hilbert-space *-representations from the linear
representations 0. This is achieved by restricting suitably
the representation space of 2‘*’; the procedure is described
in detail in Secs. II and III, its essential feature being the
requirement that the representations we construct have fin-
ite-degenerated vacuum [see Egs. (2.5)-(2.6)].

In Sec. IV the procedure is applied to the family
{0} = {Q,: xeR} of linear representations of B(0,1) on
the vector space C 2 (R™) giving the following results.

(a) A one-parameter family IT of nonequivalent irredu-
cible *-representations of B(0,1) in terms of unbounded op-
erators on L 2(R*) ® C? was obtained. Each representation
7 =n,€ll equals Q, | Z, for some xe( — 1/2,00)\{0},
2, being an ), -invariant subspace of C* (R*) such that
9. =L*R") @ C% in addition, 7, has a nondegenerated
vacuum.

(b) The family IT is complete in the following sense: if
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x'eR\ {0}, Z' is a subspace of C  (R*) whose intersection
with the vacuum subspace is nontrivial, and if 7' = Q,, | &’
is an irreducible *-representation of B(0,1), then 7' is equi-
valent to some 7€ll.

(¢) For each 7€ll and all elements zeB(0,1) satisfying
z = z* the operators 7(z) are essentially self-adjoint on &.
Particularly, this holds for z = ix; andz = exp( — in/4)y,,
where {x;, y:j,k = + 1} is the Racah basis of B(0,1).

(d) If 7 is restricted to sp(2,R) ~sl(2,R), i.e., to the
even subalgebra of the unique real form osp(1,2) of B(0,1),
a skew-symmetric representation of sl(2,R) is obtained that
equals direct sum of two irreducible skew-symmetric repre-
sentations of s1(2,R) on L ?>(R?). Each of these representa-
tions is integrable to a unitary irreducible representation of
the universal covering group of SL(2,R).

Il. FORMULATION OF THE PROBLEM

Let 77 be a Hilbert space and & a dense subspace of 77°.
A set {a,,8}: j=1.2,..,n}CEnds 2 (see Appendix for
definitions) is called pB, -set with domain & if

[{&j’ak}’al] =0, (2.13)
[{3,.81}.8,] = — 25, _,4;. (2.1b)

The & (8}) is interpreted as the jth mode annihilation (cre-
ation) operator and

A = 1a,,a}} (2.2)

as the jth mode particle-number operator of a para-Bose sys-
tem with » degrees of freedom.’

A simple example of a pB,, -set is provided by annihila-
tion and creation operators of usual bosons that satisfy the
canonical commutation relation (CCR). It is known that for
each n = 1,2,..., such a set for which the operator 4}a,

+ -+ 4 &ta, is essentially self-adjoint (e.s.a.) is just one up
to equivalences.'° That is why only “non-trivial” solutions of
Egs. (2.1) are of interest, viz. those for which the CCR do
not hold. The first example was given for » = 1 by Wigner''.
Later on, Green discovered for arbitrary », including
n = o, an infinite set of solutions labeled by one integer
p=12,..., called “order,” and Greenberg with Messiah'?
selected from among them the irreducible ones acting on a
Fock space with a unique vacuum.

Our aim is obtaining irreducible pB, -sets for n = 1,2
from the representations Q. This is possible, at least in
principle, because pB, -sets and representations of B(0,n)
are closely related. In order to get a formulation suitable for
the purposes of this study, consider another basis {bjk oA
jkJd= +1,..., + n}in B(O,n) defined via the following map
¢

a,=¢(y): =27y —iy_)), (2.3a)

by =6 (x5 ): = 44,8, ) = 4 (X — X _ ;)
—3(x _ +Xx,_;). (2.3b)

It can easily be verified that all the structure constants
are identical with those of the Racah basis [see Eqs. (1.1)];
thus, § is an automorphism of B(0,n). Moreover, one gets
from (1.2)

L, J— *
af=a_,, br=0b_; ,.

(2.3¢)
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By using these facts, one readily gets the sought interrelation
of pB, -sets and *-representations of B(0,n).

Proposition 2. 1: If  is an irreducible *-representation of
B(O,n) in terms of operators in End, %, then
{m(a;),m(a;)*: j=1,2,..,n} is an irreducible pB, set."

In view of this assertion, the problem of constructing
PB,-sets from representations Q=0 can be formulated
purely in the language of the representation theory as fol-
lows: Given a linear representation () on Cy, find an Q-
invariant subspace & C C § and introduce a scalar product
on Z such that the operators

m(2):=Q(2) | &, 2eB(0,n), (2.42)

form an irreducible representation of B(0,n) on 57 = 7
and fulfill

7(z)} =Q(2)* } 2.
This condition implies that

N=3 & =% S {r(a)r(a)}= 3 7(b;_,)
P2 . .

ji=1 j=1

(2.4b)

has to be a positive operator
N>, (2.4¢)

and, due to its interpretation as particle-number operator,
must have a nonempty point spectrum. Using the standard
considerations based upon the relations [ﬁ’,&j = —a,
j=1,..,n [cf. Eq. (2.1b)], one concludes that the sought
domain & must have a nontrivial intersection with the vacu-
um subspace

Vo:={¢eCg: a,4=0, j=1,..,n}, =0Q(g).
(2.5)

The usual requirement of uniqueness of the vacuum will
be replaced by a weaker condition

1<dim Z NV, < w, (2.6)

since uniqueness, which is essential in the quantum field the-
ory, is a too restrictive condition when systems with a finite
number of degrees of freedom are concerned. Representa-
tions 7=Q | &, which fulfill Eq. (2.6), are said to have
finite-degenerated vacuum (FDV-representations). Let us
recall in this context that for representations with a unique
vacuum ¢, one has'*
8,8i®y = pby_1$0» P>0,

where p is independent of £ and is called the order (of para-
statistics).'? This relation is in general not valid if the
uniqueness of vacuum is violated; in particular, the notion of

order does not make sense for representations with degener-
ated vacuum.

. GENERAL FEATURES OF THE CONSTRUCTION

We have seen in Sec. II that the problem involves find-
ing an -invariant subspace & CC § such that conditions
(2.4) and (2.6) are fulfilled. To this purpose we developed a
method that can be divided in two steps. In the first one we
derive general properties having the form of necessary con-
ditions that follow from the assumption that for a given (,
there exists a domain & with all the required properties. In
this way, the original family of representations {2 is reduced
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by excluding all those Q that do not fulfill the necessary
conditions. The conditions themselves are obtained by ex-
amining the structure of the subspace

DO =G NVy,.

The second step is inductive; it deals with the construc-
tion of & starting with a fixed vector ¥ in the vacuum sub-
space V,,, this vector being fully specified by the above nec-
essary conditions.

The starting point for analyzing the subspace Z ** is
provided by the following simple assertions.

Lemma 3.1: (i) The linear envelope of {b;_:
Jjik =1,..,n} is a subalgebra of sp(2n,C) that is isomorphic
to gl(n,C).

(ii) For each uegl(n,C), one has

Q(u)vg CV,. (3.1

Proof: The first statement is due to the fact that b, _,
satisfies the same commutation relations as the elements of
the standard basis {€; } of gl(n,C), if €, «<>b; _ ;. The rela-
tion (3.1) follows from (b, _,,a,) = —&;_,a; and Eq.
(2.5). ]

Remark 3.2: Notice that the real linear envelope of
i(bj_x +by_;), (bj_x —b_y), jk=1,.,n,equals u(n),
which is isomorphic to sp(2n,R) Nsp(2n), i.e., to the maxi-
mal compact subalgebra of sp(2n,R).

Corollary 3.3: Suppose that 0 | & isa FDV-representa-
tion; then & "> is a finite-dimensional subspace invariant
under Q(u), uegl(n,C).

In view of these properties, one can learn much about
Z*) by applying the theory of finite-dimensional repre-
sentations of semisimple Lie algebras.'* Consider the map «:

sl(n,C) Du—w(u): = Q(u) | Vq;

because of (3.1), w is a representation of sl(n,C) on V.
Now suppose that for a given ) there is an Q-invariant do-
main & CC § such that Q | & fulfills the conditions (2.4b)
and (2.6). By the corollary,

Dpe: =0 | D

is a finite-dimensional representation of si(»,C), and hence

g v =3°Vis- (3.2)
J

Each V,,, is the representation space of an irreducible rep-

resentation of sl(»,C) with the highest weight (HW) A(J).

Consider the particle-number operator

N:= Y Qb;_;);
i=1

by Eq. (2.4¢), N,,.: =N | 2 is a positive matrix. Let
v>0 be its eigenvalue and W, the subspace of eigenvectors
corresponding to v. As [w,,. (u), N, ]=0 for each
uesl(n,C) (Lemma 3.1), the subspace W, is invariant under
0., and thus W, equals direct sum of a subsystem of sub-
spaces V,,, in (3.2). Consequently, to each subspace V),
there is an eigenvalue v of N,,. such that Vi CW,. In
particular, the corresponding HW-vector ¥, ,, €V, ful-
fills

1‘.\-"1’;.(_,) =‘V‘I’l(1). (3.3)
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By summarizing, we arrive at the following necessary condi-
tions.

Proposition 3.4: Suppose that for a given () there is an §)-
invariant domain £ € C 3, such that Q | & is an irreduci-
ble FDV-representation having the *-property (2.4b). Then
there exist non-negative integers A,>A4,>- >4, _,, anon-
negative v, and a nonzero ¥,eZ *> such that Eq. (3.3)
holds,'¢

D = U (a,8%,...,3,,a)V,, (3.42)
and relations

w(bj_j—b; 1, ;- 1)V, =4;¥,, (3.4b)

@by, )Va =0 (3.4¢)

are fulfilled for j = 1,2,...,n — 1. Moreover,
Wy = r %(w(b_21),w(b_32),...,w(b__ nn—1 ))‘I,A

is an irreducible representation of sl(n,C).

Since Q(u) are linear differential operators, the condi-
tions (3.3), (3.4b), and (3.4c), together with ¥, €V, repre-
sent a system of partial differential equations (PDE). By
demanding existence of a nontrivial solution, one gets condi-
tions that relate v and the integers 4; to parameters labeling
Q (e.g., for n =2 there are two: N and k—cf. Sec. I). The
first step of our approach consists in finding for given v>0
and non-negative integers A,>:-* >4, _, the admissible
values of these parameters, solving the PDE systems with
these values and verifying irreducibility of @, .

Let us pass to the second step. Suppose we found the
function ¥, that solves the PDE system for some
Ay 34, _ 4, v>0, and some fixed representation £ with
admissible parameters. For the domain &, given by Eq.
(3.4a), we have to check that 7;,: = Q } Z, is irreducible
and the FDV condition 1<dim &, NV, < o is fulfilled. In
addition, a scalar product must be introduced on & ; such
that (2.4b) will hold.

To this purpose we first try to make the structure of &,
lucider by finding a basis & C &, with some specific proper-
ties. Naturally, we demand

V. e¥. 3.5)

As a direct consequence of Egs. (3.3) and (3.4), one finds
that ¥, is a common eigenvector of 7;:=Q(b;_;),

ji=1l..,n:
ﬁj‘l’,{ = Vj\ll/»’

(3.6)
each eigenvalue v; being a simple function of v and
Ay, _ 1 - Further, the commutation relation (2.1b) im-
plies forp = 1,2,...:
map=af(i; —pd;_,), A;(a%)? = (a%)P(f; +ps;_ ;).
(3.7)
A straightforward generalization together with Eq. (3.6)
yields, for any monomial Me % : = % (a,,a%,....a,,a* ),
mMY, = (v, +1,)MY,,
r=0,+1,+2,.. j=12,..n
Thus, Z ; is spanned by functions PeC g labeled by integers

O = (v, +r)®, j=1l..n (3.6)
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This is again a system of PDE’s and we shall see that particu-
lar solutions can be found analytically for both the cases
n=12.

Let & be alinearly independent set of solutions to (3.6')
for some infinite system of n-tuples (7,,...,7, ) [notice that in
view of Egs. (3.5) and (3.6), (0,...,0) must belong to the
system] such that

UECE,,. (3.82)
Then one clearly has

D, C(UE )y = Eyin- (3.8b)

Due to the following simple argument one can expect

that Eq. (3.8a) will hold as soon as & is sufficiently large.
For any ®=9®, , €& one gets from (3.6') and (3.7)

6, P = (v, +r, —6;_;)a,P.

Comparing with Eq. (3.6") suggests that @, ® should be
identified with &®, ,_, , and thus &, ®, ,e¥ if
P, ., _1..,€E, etc. In fact, in cases we will consider in the
following, it is possible to choose & such that
4, % C#uU{0},at% C#,i.e.,theactionof 3, anda¥ on any
Peg is very simple.

As soon as this action is found, one can verify directly
whether Q) | &, is irreducible. If it is so, then from Eq.
(3.8b), it follows in view of invariance of & ; under )

2 A= gnm
and hence & is a basisin & ;.

Having such a basis is very helpful in introducing a sca-
lar product on &, obeying the *-condition (2.4b). This
condition requires the operators #;: = #; | &, to be sym-
metric and hence the scalar product must be chosen in such a
way that € becomes an orthogonal set. This can always be
done: suppose & = {®, };>_, (for simplicity the elements of
& are labeled by a single index) and let

(,,9,):=16,_,,

The Hilbert space % = & ; = & ;,, then consists of all func-
tions

®= Y c,®, such that Y t,c,|*< 0.

r=1 r=1

rs=1,2,.,>0.

However, this choice does not guarantee that (2.4b) is ful-
filled. Let us discuss this point in more detail.

First of all, one can replace Eq. (2.4b) by a simpler
condition

(@;®,0) = (9,8'®), 1<j<n, P, (3.9)

since each operator (z), zeB(0,n), equals a linear or qua-
dratic function of @, &f. All the operators &; can be expressed
as (see Ref. 5 and Sec. I)

a=a=fo+ Y fiePx
=

Then by the definition of the #-operation,® one finds for any
PeC=C3 (M), MCR"

(@) XD — OX (@) = 3 p, [(f®)XD],
k=1

where for ®, YeC 3 (M), P=(@,....¢n), ¥Y=Wy,...¥x),
@ ¥,€C = (M)
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N —
PXY:= 3 @4,

r=1

By the Gauss theorem Eq. (3.9) is fulfilled if &, is a sub-
space in

N o
H= z L*M),
r=1

and if all components of each @€ ; vanish on the boundary
of M. Of course, this requirement is only sufficient for (3.9)
and in case it were not compatible with the previous condi-
tions imposed upon &, , one could try another choice of #°.
However, verifying the condition (3.9) would then probably
be difficult.

According to the general definition, the complete speci-
fication of each of the sought representations | & in-
cludes also a projection E on the Hilbert space #° that deter-
mines the  decomposition Endgy & = (Endy ),
@ (End 5 Z ) ,—f. Appendix, Eqgs. (A2)-(A4). Assume
that

(3.10a)

N o
=3 9,
r=1
& being a Hilbert space to which belong all components of
each @ . Then the projection E can be chosen as

~ T 0
E:=1, oE, E;=(”” )
0 0

The choice is implied by the structure of the operators
€(z)."? The point is that these operators are expressed in
terms of two finite subsets I, M, CEnd C", and of scalar
linear differéntial operators &, acting on C=* (M):

Q)= ¢, 07T,,

in such a way that T, €I, if z is an even element of B(0,n)
and T, e, if z is odd. In addition, the projection E€End C¥
satisfies ET, = T, E if T,eM, and ET, =T, (I—-E) if
T,€M,. It then follows from (3.11) that | & will map
even and odd elements of B(O,n) in (Endy ), and
(Endy Z),, respectively. “

On the other hand, fixing E by Eq. (3.11) imposes an
additional condition upon the structure of the domain Z:

D= (@ @N)ED = (@1 N 2,0, 0) €D
[cf. Eq. (A2)]. This will hold, e.g., if

(3.10b)

(3.11)

N e
2=Y D, (3.12)

r=1

notice that because of Eq. (3.10b) all D, must be densein ¥.

It appears that for representations Q”, n=1,2, of
Refs. 1-3, a domain & can always be found such that (3.12)
holds. This is due to the structure of the operators
fi; = Q(b;_;) that allows for decoupling of the system
(3.6") for vector functions ®=(g,,...,px ) into N-indepen-
dent systems of n partial differential equations for individual
components @, . For getting the basis &, one chooses linearly
independent sets &, of solutions for the rth component and
puts

N
#:= U (0,..,8,,..0).

r=1
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This one has

N o
glin=zl Dr’ Dr:=(gr)lin'

IV. RESULTS FOR 5(0,1)
A. Specific features of the case n=1

The operators 2V (z) =0, (z),2eB(0,1), xR, are ordi-
nary differential operators on C* (R*) ® G The explicit
formulas for

X=0,0x), Y:=0.(y)

read"’
=~ ~ d 1
X =ir, X,_,=r—+—,
-1 =1 1-1 dr+ 2
- , d? ¥ «
X”=l(—7’z+?—7 803), (4.1)

Y_,=7nreo, Y, =7 (%80’2 - igeal) , i=y{—1.
Here 5: = exp(in/4) and o, 0,, o, are Pauli matrices. The
single Casimir element of B(0,1),

ky: = fo_ 1 — {xll)x—l—l} +[yuy_il,
is represented by

Ki:=0,(k) = (2% - I
Let us denote the components of any ®eC* (R*) ® C? by
@osa= £ 1

o={p,..¢_}, @.€C>(R"),
and let

0% =i(o, — iao,).
As has been shown in Sec. II, the relevant operators are

@ =0, (a) =27, —i¥_)),

ii: =Q,(b,_,) =4{a,a*
Substituting from (4.1) yields

a=772_”2¢=ila(%+r—%)80(a)’ (4.2)
1 d? 2k

e — = r2 — e — ). 4.

" 2( dr2+ +r2 ’2803 (4.3)

The condition @¥ = 0, which determines the vacuum sub-
space V;, =V,, then becomes

(1+,_ﬂ)wa=o, a=+1. (4.4)
r

dr
The solution exp( — 7°/2)r** belongs to C* (R™) for both
a = + 1 and thus

Vx = {\I’:(c+ )! \I/:(r_ )}lin’
r 2
WP (r):=8,_4 exp( — 7) r,

i.e., dim ¥V, = 2. Hencg, the finite degeneracy of vacuum
(FDV condition) is automatically fulfilled.

Of the conditions (3.3), (3.4b) and (3.4c), which deter-
mine the vector ¥,, only the first one, i.e., #¥Y, =vV¥,,
makes sense for n = 1. By using (4.3), one finds

(4.5)
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RYLP = (Br+ )P, P, (4.6)

and thus a vector VeV, fulfills #¥ = v¥ for some v>0 if
V=V, k> —} 0r¥ =W, x<}. Asno highest weight
occurs for n = 1, and by Eq. (4.6) the eigenvalue v depends
on x only, we hereafter write ¥, instead of ¥, . Consequent-
ly, the necessary conditions of Sec. III are simplified as fol-
lows.

Proposition 4. 1: Suppose that for a given xeR, there is an
Q) -invariant subspace Z,CC* (R*)eC? fulfilling
2,.NV,#{0} and let Q, | Z, be an irreducible *-repre-
sentation of B(0,1). Then

2.=2¥,)={@"HV,: k=01,.},, (4.7a)
where
W), ke( — 4, 0)\{0},
Vo= 4.7o
. [w;-n we( — oo, )\{0}. (470

Proof: With the help of {a,a* } = 27, one easily verifies
by induction that for each monomial M in &, @* holds MW,
e{(a")*V,: k = 0,1,...};;,. The reason for excluding the val-
ues k=0 and k= F} for ¥, = ¥!*’ is as follows: for
x = 0, the operators @, a* equal direct sum of two identical
Schrédinger representations of the canonical commutation
relations, which is the case we are not interested in (see the
discussion in Sec. II). If x = J- 1, then by Eq. (4.6) one has
for any scalar product on & under which 2, | & becomesa
*.representation: "V, (¥’ = 0, and, in view of 4%, ‘£’ = 0,
the representation would be trivial. ]

B..Construction of irreducible *-representations
According to Eq. (4.7a), the sought domain &, is
spanned by functions
Qi = (M) Y,. (4.8)

For getting the functional dependence r—®; (r), notice
that Eq. (4.2) yields for any ®={p_,.¢_}eC* (R*) 8 C%,

(@), = —772‘*(di—r+';‘) P

d’ (4.9)
(@®)_ =72~ (——r—’—‘)m-

dr r

On the other hand, by applying functional relations for the
Laguerre polynomials (Ref. 18, §8.971) to functions

£ =@+ exp( — P/2)L, @ (P),

2k! 172
o, ( : _) , 4.10)
, Ta+k+1) (
one finds

(di_ﬂi_,)fk(a)= _2(a+k+1)1/2fk(a+l),
r r

(%-Fg—;d—r)ﬁ‘(“"’” =2(k+ l)”sz(i)l .
Consider the first of alternatives (4.7b): ¥, =W, ),
xe( — },00 ) \{0}. Comparing (4.5) to (4.10) gives

12
¥, =&, = ( I"(K-; 1/2) ) Fo Fy={fr-v»0}.

(4.9
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Equations (4.9) and (4.9’) then yield by induction

O o s )

k=0,1,. (4.11)

(for any XeR, [x] denotes the largest integer that does not
exceed x), with

Fu=F:={f""0},

F2k+ 1 EF;ZL 1+ = {Os "'fk(K+ ]/2)}-
Clearly, the functions F, also span & (W.*’) and we shall
see when considering the *-condition, that working with F;

instead of ®, has some technical advantages.
Bya*®, = ®, , and (4.11), one has

(4.12)

&*Fk=1_7dk+le+l’ (4-133)
with
d,=d,(k):=[k+(1—(—=D*K]2 (4.13b)

For a®,, we get by induction with the help of {a,a* } = 27,

a@:k =2k¢2k—l’ a¢2k+1 = (2k+2lf+ l)¢2k’
whence

&Fk =17dka-l' (4.130)

Now that the action of operators @, @* on the vectors
spannirig the domain 2 (V. ) is known, algebraic irredu-
cibility of Q, | Z (¢ ’) can easily be proven. We have to
verify that to each ¢=a F, + - + ax Fx, ax #0, there
exist operators T,S€% (d@,a* ) such that ¢ = TF,, F, = S¢.
Existence of T directly follows by Eqgs. (4.8) and (4.11);
further, (4.13c) yields @*¢ = ayn®dxdyx_, - d,F, and
thus S~a* (notice that d, #0, for k = 1,2,...).

Next we have to introduce a scalar product(-,-) on
Z (¥.*) such that the condition (3.9) holds. As has been
argued in Sec. III, such a scalar product must fulfill

(Fo,F))=88,_,, >0, kl=0,1,.. .
Now the condition (3.9) is equivalent to

(aF,,F)) = (F.,a*F,), klI=0.,.. .
By Eqgs. (4.13) these conditions become

diti 16k 1 =di kb _y

i.e., tk—l =tk’ k= 1,2,... .
We thus see that Eq. (4.14) is satisfied iff there is a positive ¢
such that

(Fk’Fl)z(FkQFI)t:=t6k—l’ k,l=0,1,.... (4.15)

Let 77, be the Hilbert space obtained by completing
Z(¥.LH)) under (-,-), and let 7¢” be the representation
Q. | Z(¥.*’) regarded as a Hilbert-space representation
on 7, ; especially we set 7, =7.". Clearly, one has

7P =V,r V. >0
V, being the unitary map of #°; onto 5%, given by V,F,
=t - 1/2Fk .

Hence, it is sufficient to consider the case =1 only.

The functions f{*, k = 0,1,..., form an orthonormal basis in
L2*(R™*)foreacha> — 1, whichimplies that {F, };°_, isan

(4.14)
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orthonormal basis in L 2(R*) ® C? for each x> — }. Thus
7 can be chosen as L 2(R™*) ® C?, this choice being unique
up to unitary maps.

The above considerations concerning the choice ¥,
: =W+ can be concluded as follows: for each x> —},
k#0, the linear representation {2, yields an irreducible rep-
resentation 7, on L?*(R*)®C? with domain {F{:
k =0,1,...}y,. The representation 7, satisfies the *-condi-
tion (4.14) and is determined uniquely up to unitary equiv-
alence.

For the other choice ¥,: = W{~’, x>}, k#0, every-
thing can be repeated step by step. By defining

Gu=G i ={0.£i~ ),

G+ 1=G i ={fL7 2,0}, (4.16)
di i =d, (—«x),

we find that for each x <1, the relations
3G, =1d {7 ’G,_,, @G, =1d(7)G,,,, (417)

determine an irreducible representation p, of B(0,1) on
L?*(R*) ® C?, with domain {G,: k =0,1,...},;,. The *-con-
dition (4.14) is satisfied and any other Hilbert-space repre-
sentation with these properties obtained from
Q. | Z(¥.7) is unitarily equivalent to p,.

However, the representations p, arein fact of no interest
as for each « <} the representations p,, 7_, are unitarily
equivalent:

pe=Ur_ U™, U= —il®o,

Proof: By (4.12) and (4.16) we see that UF{~—*~
=G, k=01,..,1i.e., Umaps the domains of p, and 7 _,,
onto each other. Further, Egs. (4.13) and (4.17) yield

Ua( —K)F;™ " =nd, (—K)F(ZP =9d [ 7°G {2,
=a(x)G =a(x)UF{™",
k = 0,1,...; similarly

Ud( —)F,~° =a*(c)UF{—". n

The main results of this section can be summarized as
follows.

Theorem 4.2: (i) For each x > — }, k#0, the operators
Q.(2) | Y., zeB(0,1), form an irreducible *-representa-
tion 7, of B(0,1) on L?(R*)eC? with domain Z,
:={F{":k=0,1,..};;, specified by Eq. (4.12) and projec-
tion E: = I ® (0, + 03)/2. In addition, 7, has nondegener-
ated vacuum

Yt = (___LF("; ))V2 F.

(ii) Any two representations in the family

: = {7,: xe( —},0)\{0}}
are nonequivalent.

(iii) The family contains (up to unitary equivalence) all
the Hilbert space irreducible *-representations of B(0,1)
that can be obtained from linear representations {2,
x€R\ {0}, and whose domain contains a vacuum vector.

Remark 4.3: More explicitly, (iii) states the following:
Let keR\{0}, 2"’ be a subspace in C* (R*) ® C* having
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nontrivial intersection with the vacuum subspace ¥, , and
S be a Hilbert space such that Z’ = #, and the operators
Q. (2) | Z',2zeB(0,1), form an irreducible *-representation
7, of B(0,1) on 5 with projection E’. Then there is a uni-
tary map V: L 2(R*) @ C?— 2 for which

, [V‘)T,,V", if k> —},

< Vﬂ'_,V“, if k< -1,
andE' = VEV-'or B'=VI-E)yV~".

Proof of the Theorem: (i) It remains to verify that E

fulfills E.@ &9, and that for each g2, holds

(4.18)

EQ (x)=0Q, (x)E<I>, (4.19a)
if x is any even element of B(0,1),
Ee,(ne=0,n0-be (4.19b)

ifyis odd (cf. Appendix). All these conditions can readily be
verified by using Eqgs. (4.12) and (4.1).
(ii) Let 7, , 7. €ll,x#«’; in view of (4.6) and [#,a* ]
= ka** the minimal eigenvalue of 7, (b,_,)=hi | D,
equals x + } and hence 7,, 7, cannot be equivalent.
(iii) By Proposition 4.1, there is nonzero ¥, in 2'NV,
and the alternative (4.7b) holds for ;. Then Eq. (4.18)
ensues from the considerations in the begmmng of this sec-
tion. Further, Eq (4.19a) implies that #": = 7 (b,__,) com-
mutes with £’} ; then, by (4.18), #’ has the same spectrum as
fi, i.e., a pure- )pomt spectrum with nondegenerate eigenval-
ues. Hence E'F, =p,F}, Fi,:=VF{ if x> —5, Fi
= VF{~" if k< — §; moreover, p; =0 or 1 since E' is a
pro.lectlonAFmally, (4.19b) yields for a'=wm.(a,): E'a'F; H
=a'(I — E")F | and, by using (4.18) and (4.13c), we find
Px_1=1—pi, k=12,.. . Thus, one has either E’sz
=F, E'sz+1 =0 °rE'F2k =0, E’F2k+l =Fj 1
Since

Esz =F2k’EF2k+l =0, (4.20)

the first possibility implies E' = VEV " and the second im-
plmE'——V(I Eyw- [ |

C. Essentlal self-adjointness

The -property (4.14) means that the operators X,k
P= T (Xpe ), Y, =, (y;)  satisfy X = —-Xjk,Y
= —iY, ie, iX, '« and 7jY; are symmetnc By using Nel-
son’s analytxc-vector theorem,'® we will now prove that
these operators are moreover essentially self-adjoint (e.s.a.).

Hereafter only ke( — },0 ) \ {0} are considered and the
notation d=a(x): = 7, (@) is used.

Lemma4.4: LetA be a monomialin 8,4 of pth degree,
p=12,.. .Then

Nk+2c+p+2) k
T(k+2+2)

where (||| is the norm on #=L*(R*) @ C2.

Proof: Since «+}>0, Eq. (4.13b) yields d}
<k + 2« + 1. For p = 1 the assertion now follows by Egs.
(4.13a) and (4. 130), and the proofis ﬁmshed by induction if
one realizes that 4, Pt equals entherA at orA a. [

Proposition 4.5: If P,, is a homogeneous polynomial in &,

|4, F, |[>< =0,1,., (421)
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a* of degreed, d = 1,2, theneach F;,, k =0,1,..., is an analyt-
ic vector of P,.
Proof: One has
A~ 2 A
Pd = Z a,Ad('),
r=1

where 4 4" are the independent monomials of degree d. Let
M: = max|a, |; then the estimate (4.21) yields for any F,,
t>0:

o n t n
> PLF] —
nl

n=0

<33

S (M)” (I‘(k +2+nd+2) )l/z

n=os=h nl T'(k+2c+2)
i 2"Mt)" (l"(k+2x+ na'+2))"2
<, T(k + 2% + 2) '

This series is convergent for any >0, if d =1 and for
0<t < (8M) ' if d = 2, whence the assertion. [ ]
As {F,: k=0,1,...} is a total set in #°, we get, by the
Nelson theorem the followmg corollary.
Corollary 4.6: IfP,, --P d=12; thenl,’é ises.a.;in
particular, this holds true for the operators iX,,, 17]'}, Sk
=%l
IfBisa biquadratic homogeneous polynomial, then the
above proposition implies that the series

= [|B"F,|jt"
(2n)!

n=0

is convergent for ¢ < (64M)~"'. Thus B has a total set of
semianalytic vectors and by the Nussbaum theorem,*® B is
e.s.a. if B>0 An important example provides the operator

~ A Az "2 Az
B=N:= —(Xu +X1_1 +X—l—l)'

Essential self-adjointness of N implies that the representa-
tion 7, of sI(2,R) ~sp(2,R), which is obtained by restricting
@, to the even subalgebra of the unique real form osp(1,2) of
B(0,1), is integrable to a unitary representation of the uni-
versal covering group of SL(2,R) (see Ref. 20). We shall
return to this point in the next section.

Remark 4.7: The conclusions concerning integrability
of 7, and essential self-adjointness of LX), can alternatively
be obtained as follows. Introduce a new basis in s1(2,R):

X —X
qyi=X_; G= =Gu—X1-) l),
2
X X_1— .
43:‘—""——_—( ”+2 1=1) =ib _,

[see (2.3b)] and set Q,: = 7, (g, ). For the Casimir element
of sl(2R), ome has c;=2}_; —{x;;x_,_,}
=2(qi + 42 ~ ¢3), and thus A: = (Q’+Q2+Q )
commutes with Q3 Now Q, = ifi and since Fy, k =0,1,...,
are nondegenerated eigenvectors of A, they are also eigenvec-
tors (and hence analytic vectors) of A. Consequently, A is
e.s.a., which further implies that any operator t(a,Q, + a2Q2
+a,0,), a,€R, is e.s.a. 2!
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D. Restriction of =, to the even subalgebra
sl(2,R)Cosp(1,2)

Let 7, be the restriction of 7, to sl(2,R). According to
Eq. (4.19a), 7, is reduced by the projection
E=I@ (0’0+0’3)/2:

no=r e

the 7{*’, @ = + 1, being skew-symmetric representations of
sl(2,R) on L*(R*) with domains Z(*: = { f, *~*?:
k=0,1,.}; [cf Eqgs. (4.12) and (4.20)].

Proposition 4.8: The representations 7*’ are irreducible.
. Proof: We have to show that the set % ‘“: = 2 (X P,
X{2L,X9 ), X=X, | 2, has no invariant sub-
spaces. By Egs. (2.3) we see that X, are homogeneous qua-
dratic polynomials in &, &* . Irreducibility of 7’ can then be
verified with the help of Eqgs. (4.13) by repeating the argu-
ment we used for proving absence of invariant subspaces of
DY), [ |

Remark 4.9: Let 2 CL*(R") be the one-dimen-
sional subspace spanned by f*~ %2, Clearly, each of the
domains & (* can be expressed as the algebraic sum of sub-
spaces (%

D=3 HP.

k=0

The f*—*? areeigenvectors of #‘® : = 7% (b, _,) corre-
sponding to eigenvalues

AL =2k +x+ (Ja| —a+1)/2.

Since the maximal compact subalgebra u(1) Csl(2,R) is
spanned by ib, _, = (x;; + x_,_,)/2 (see Remark 3.2),
the restriction 7{* | u(1) equals direct sum of one-dimen-
sional representations of u(1) on #°® that are uniquely
determined by eigenvalues A (3. This means that the so-
called weight diagram of 7{*’ is {1 {*: k =0,1,...}.

Each of 7{* is integrable to a representation 7 (*’ of
G= SL(2,R), as the vectors f*~*?, k =0,1,..., are ana-
lytic vectors of

N@ = _ ((/’1}{7))2 + (i'fa_) D+ (?(f)l—l %)
and form a total set in L 2(R*). Moreover, 7 {* is a unitary
irreducible representation (UIR) of Gon L *(R™) with the
following property®*: let K be the simply connected sub-
group of G whose Lie algebraisu(1); then 7 (* | K equals
the direct sum of the UIR’s of K on #°{®, each of them being
uniquely determined by the eigenvalue A (2. In fact, K~R
and the UIR of X on #°® is equivalent to #—exp(itd (%),
teR.

V. CONCLUDING REMARKS

The problem of constructing representations of B(0,1)
was recently considered [starting with a family of linear rep-
resentations of B(0,1) equivalent to our {Q"}] by Mu-
kunda et al.?® These authors stressed the importance of spe-
cifying carefully domains of unbounded Hilbert-space
operators that arise from “formal” differential operators
0 (z2), zeB(0,1). They also corrected some erroneous con-
clusions of an earlier study.?*

The “Schrodinger description” of Ref. 24 is in fact iden-
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tical with our family I1, and so are the representations of
osp(1,2) used by D’Hoker and Vinet in their study of dy-
namical symmetries of Dirac monopole.?* On the other
hand, the results (b)—(d) from the list in Sec. I are new, as
well as the approach we used. Its advantages become appar-
ent especially when considering the cases 73>2 for which the
subalgebra of sp(2n,C) that leaves invariant the vacuum
subspace is nontrivial (cf. Lemma 3.1 and Proposition 3.4).
Construction of irreducible *-representations of B(0,2)
based on this approach is in progress.
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APPENDIX: HILBERT-SPACE *-REPRESENTATIONS
OF LIE SUBALGEBRAS BY UNBOUNDED OPERATORS

It is well-known that Hilbert-space representations of a
real LSA whose even subalgebra is noncompact have the
following property: if even generators are represented by
skew-symmetric operators, then at least one of them must be
unbounded.?® That is how one mostly arrives at *-represen-
tations of LSA by unbounded operators. Corresponding
definitions are obtained by generalizing, on the one hand, the
definition of finite-dimensional *-representations of LSA as
given, e.g., in Ref. 6, and, on the other hand, that of oo-
dimensional *-representations of Lie algebras.?”

Let 5% be an «o-dimensional separable Hilbert-space
and D its subspace such that

D= (A1)

Consider the set End 5~ D=End D of linear operators X on
¥ satisfying

(i) D(X) = D,Ran XCD, so that D is a common invar-
iant domain for all XeEnd D,

(ii) D(X")DD,Ran X* CD,

where X1 is the usual Hilbert-space adjoint of X and
X:=X'"}D.

Then End D becomes an associative *-algebra with involu-
tion X—X*.
For a given projection E on 5% such that

EDCD, ED+#D,
consider the following subsets of End D:
(End D),: = {XeEnd D: XEy = EXy, yeD},

(End D) ,: = {XeEnd D: XEy = (I — E)Xy, yeD}.
(A3)

(A2)

Then one has
End D = (End D),® (End D),, (A4)

and End D becomes a LSA if one defines multiplication
X,Y—(X,Y) as the bilinear extension of

(X,Y):=XY— (—1)*YX, Xe(End D),
Ye(End D)g, a,B8=0,1. (AS)
This LSA, which is completely determined by the associative
*.algebra End D and projection E, will be denoted
(End D,E).” The mapping X—>X?* preserves the grading®®:
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Xe(End D), =>X*e(End D),, a=0,l.

Further this mapping is an involution on End D and thus by
(AS) one sees that (End D,E) is a *-LSA.

Definition: Leta *-LSA, of = o/ , ® &, with multiplica-
tion x, p—x-y and involution x—x* be given. Further let D
be a subspace in a separable Hilbert space 7 and E a projec-
tion on 57 such that the conditions (A1) and (A2) are ful-
filled. Linear mapping 7:

o Dx—r(x)eEnd D
is a *-representation of .« on #° with domain D and projec-
tion E if

(i) 7(«,)C(End D),, a=0,1,

(il) m(xp) = (m(x),7(y)),

(iii) 7(x*) = (m(0))*.
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The classification and the interpretation of the Young supertableaux of the orthosymplectic
group OSP(2|2p) are given. A particular emphasis is made on the generalized atypical
supertableaux associated to nonfully reducible atypical representations.

I. INTRODUCTION

The interest for the mathematical aspects of supersym-
metry starts with the pioneering paper of Corwin, Ne’eman,
and Sternberg’ closely followed by that of Pais and Ritten-
berg.? After a while a precise mathematical formulation of
the Z,-graded Lie algebra has been given by Kac® in a series
of papers that contains, in particular, the description of typi-
cal and atypical finite-dimensional representations of simple
classical superalgebras. A particular set of orthosymplectic
superalgebras is considered in this paper.

We introduce a graded vector space V= Vs & ¥, and
let G be a nondegeneraie even bilinear form on ¥ such that
the restriction of G to Vg is a symmetrical formandto ¥V, a
skew symmetrical form. Let us introduce the dimensions of
Vgand V,,

dim Vg =m, p>Ll

The set of Z,-graded matrices 4(m,2p) leaving invariant the
even bilinear form G is, by definition, the orthosymplectic
group OSP (m|2p).*?

The subgroup associated to the Bose sector is
SO(m) ® Sp(2p) and the classification of the orthosymplec-
tic superalgebras is made according to the value of m. The
special case m = 2 plays a particular role, the two Lie groups
SO(2) and U(1) being locally isomorphic. This paper is
devoted to a study of the Young supertableaux of the ortho-
symplectic groups OSP(2|2p) whose Lie superalgebras are
noted C(p + 1) by Kac.?

By study we mean a classification of the supertableaux
according to their size and a knowledge of the
SO(2) ® Sp(2p) components of the supertableaux. The spir-
it of our investigation is analogous to that used for the super-
tableaux of the superunitary groups.®

Young supertableaux for supergroups have been intro-
duced by Dondi and Jarvis, '° Balentekin and Bars,'' King, '?
and the particular case of orthosymplectic groups has also
been considered by Farmer and Jarvis'®> and Hurni.**

We use here the tensor product method briefly de-
scribed in Sec. III and, as a by-product, we are able to relate
the highest and lowest weights of an atypical irreducible rep-
resentation of C(p + 1). The results are given in Appendix
A.

For the orthosymplectic groups OSP(2|2p) we encoun-
ter two types of supertableaux.

(1) The first type is the supertableaux associated with
an irreducible or to a fully reducible representation of

dim ¥V, =2p, m3>l,
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OSP(2|2p). They have, by themselves, a well-defined mean-
ing and they will be called irreducible supertableaux. Their
properties have already been studied by Farmer and Jarvis.'
For completeness we briefly recall in Sec. IV the results us-
ing our framework of classification.

(2) The second type is the supertableaux associated
with nonfully reducible atypical representations of
OSP(2|2p). They do not have a meaning by themselves and
only a pair of such atypical supertableaux can make sense in
terms of representation of OSP(2|2p). The definition of the
constituents of the generalized atypical supertableaux and
the description of their atypical components are made in Sec.
V, which contains the main original results of this paper. The
particular case OSP(2|4) associated with the N = 2 super-
symmetry is explicitly discussed in Appendix B.

The situation turns out to be extremely similar to that
found with the supertableaux of the superunitary groups
SU(n|1) or SU(1|n).° This is due to the fact that in both
superalgebras C(p + 1) and 4(n — 1,0) the spectra of the
atypical eigenvalues of the U(1) generator are nondegener-
ate.

A brief discussion is added in Sec. VI concerning the
topology of the set of Young supertableaux of OSP(2|2p) in
relation to their total number of boxes.

The particular case of the orthosymplectic group
OSP(2|2) has been considered in a separate publication'®
and it will not be discussed here.

In order to make this paper self-consistent, the basic
facts concerning the superalgebra C(p + 1) of the ortho-
symplectic group OSP(2|2p) have been added in Sec. II.
Detailed results can be found in Refs. 3 and 13 and we have
retained here only those useful for a good understanding of
the supertableau approach.

Il. BASIC RESULTS ON THE SUPERALGEBRA C(p +1)
(REF. 3)

(1) The superalgebra C(p + 1) of the orthosymplectic
group OSP(2|2p) belongs to the class I superalgebra and it
can be decomposed as

L=L_,eLyoL_,.

The sets A, and A, of even and odd roots are given by

Aoz{iei iej;iZe,-},

it = 1.2,p.
A={+d+e}, 17 o
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We call the Cartan subalgebra H,and N * and N ~ are the set
of positive and negative generators,
L=H+N*+N".

For C(p + 1) the classification of the generators is given in
Table I, where i, j = 1,2,...,p. The rank of the superalgebra
C(p + 1) isp + 1 and the dimensions of the various compo-
nents are

dimL,=p(2p+1)+1,

dimL, , =2p,

dimL =2p*+ 5p + 1.
The Bose subalgebra L, is reductive with the U(1) factor X.
The Fermi subalgebra L, isreductible, L, =L, @ L_,,and
the generator X can be normalized so that

[KL,]=xL,,.

The basis in the Cartan subalgebra is usually chosen as
h,=B, +K,

hj+l =B; —Bi 141>

hy,,=B

pp?
The hidden SO(2) generator K is related to the Cartan gen-
erators /; by

i=12,..p— 1L

P
K=h—Sh.:

(2) An irreducible finite-dimensional representation of
C(p + 1) is defined by its highest weight A. Of course A is
annihilated by every positive generator and the Kac—Dynkin
parameters are the eigenvalues of the Cartan generators 4;
for the highest weight A:
hi|A) =a;|A).
Similarly,
K|A) =k, |A)
and k, is related to the Kac~Dynkin parameters by
I
kr =a, _zal+i'
1
We shall use the following notation for an irreducible repre-
sentation R(A):

R(A)=>{alay,..0a, )

where a,(k, ) is any complex number and a,,....a, , , are
non-negative integers. These last parameters describe an ir-
reducible representation of the symplectic group Sp(2p) and
it is convenient to introduce the Young tableau Y(A) of this
representation shown in Fig. 1.

TABLE I. Infinitesimal generators of C(p + 1).

H {B,} K
ve  Bli<h (r,,}
{Cij = q,} {G+1}
N- {Bq"i> ]} {F_j}
{D’J = l)]l} {G ...j}
Sp(2p) S0(2) L, L,
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| »
T v,
T v,
FIG. 1. Young tableau Y(A).
Here,
P I3
Vj =zal+i’ J= 1,2,.--,p- (1)
7

Wethen have an equivalent description of the highest weight
A with the Young tableau Y(A) = Y(v,,...,v,) and the lar-
gest eigenvalue &, .

(3) For an irreducible representation R(A) the con-
struction of the different components associated with the
even subalgebra of SO(2) ® Sp(2p) is made by applying the
odd negative generators F_; and G _; on the highest weight
A. We then obtain 2% possible states of the form

h=Ph=p

ImII [F_, 1*[G-,1™IA), (2)
h=1h=1
where n; ,n; = Oor 1. The eigenvalue of the generator KX for
the state (2) is simply given by
kp = kA —pPs

where

p=>n +Yn, 0<p<2p.
T 7z

When all the states (2) are coupled to A the representa-
tion R (A) is typical. It has 2% SO(2) ® Sp(2p) components
distributed in 2p + 1 levels in £,

k=ky,ky —1,..k, — 2p,
and the dimension of the typical R(A) turns out to be inde-

pendent of k, and simply related to the dimension of the
Sp(2p) Young tableau Y(A) by

dim R(A) = 2%dim Y(A). 3)

(4) For particular values of k, some states of theset (2)
aredecoupled and the representation R (A) is atypical with a
dimension less than that given in formula (3).

For the Kac-Dynkin parameter a, we have 2p possible
atypical values

J
a, =Af =z (1 +al+i):
T

p ,
a,=B; =3 (1+a,,,) J=01,..p—1
T

P
+ Y (I+a,0),

T

The atypical values are non-negative integers in the or-
der
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Ay=0<A,<" <A, ,<B, ;< <B<B,
B0=22T:(1+al+i).

Notice that the half-sum

U +B) =3 +a.)

is independent of j and it corresponds to a typical value for
a,.

For the eigenvalue k, and the Young tableau param-
eters v, the atypical situations are the following:

a,=A4;ky + V14 =)

a,=B;&ky — vy, =2p—],
and the value k, = p is typical.

(5) The construction (2) is equivalent to performing
tensor products of the Young tableau Y(A) by the one col-
umn with / boxes (0</<p) Young tableaux F, of the funda-
mental representations of Sp(2p)."* v

The reduction of an irreducible representation R(A) of
the orthosymplectic group OSP(2|2p) with respect to the
subgroup SO(2) ® Sp(2p) is then written as

j=01,.p—1,

p=2p
RA) = o [YW)],®[eF]_,, 4)
p=

where
I=L,L—-2,..,L—2n,
L =min(p,2 — p).
Thesumover/endsat/ = Oifpisevenandat/ = lifpis
Odd'The dimension of the fundamental Young tableau F; is
dimF, =C}, — C3;?,
where C'},, is as usual the binomial factor
Ch, = p)/1(2p— D

As a consequence the dimension of the level k = k, of a
typical R(A) is simply

C%, dim Y(A)

and we immediately recover formula (3) for a typical repre-
- sentation.

lii. METHOD

(1) The method used for the description of the
OSP(2|2p) supertableaux is the tensor product method in-
troduced in previous publications.®® The starting point is the
one box supertableau F associated to the fundamental repre-
sentation {1|0---0} of OSP(2|2p) whose SO(2) ® Sp(2p)
components are

4
K o=1 '
A
D = .9 [ e )
2p+2
k=-1 1
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where 1 is the singlet representation of Sp(2p).
(2) The simplest tensor product is

(1 0L]- - - 1

(2p+2) x (2p42) = (2p2 +3p+2) + 1

(2p?+5p+1) +

(5)

The dimensions indicated for the supertableaux here and in
what follows are computed with the determinant method of
Balentekin and Bars."!

The zero box supertableaux 1 is associated with the
singlet atypical representation {0|0,...,0} of OSP(2|2p).

The supertableau with two superantisymmetric boxes is
irreducible and it describes the adjoint representation
{2/1,0....,0} of OSP(2|2) with the SO(2) ® Sp(2p) compo-
nents of the Lie superalgebra C(p + 1):

k=1 D L,,
N 2P A
— k=0 11-1 Lo
p(2p+1)
2; +5p+1
k=-1 D Lo,
2p

This representation is typical when p = 1 and atypical when
p>2.

The supertableau with two supersymmetric boxes is ir-
reducible only when p>2. The case p = 1 has been studied in
Ref. 15. For p>2 it describes the irreducible representation
{2/0,...,0} of OSP(2|2p) whose SO(2) @ Sp(2p) compo-

nents are
k=2 1
Y
k=1 |
2p
— k=0 + ]
ry .
2 2p -p-1
2p +3p+2
k =-1 O
2p
k= -2 1

This representation is typical when p = 2 and atypical when
p>3.

In summary, when p>2 the tensor product (5) is simply
written in terms of irreducible representations

{1)0....,0} @ {1}0....,0}
= {2/1,0,...,0} ® {20,...,0} ® {00,...,0}.
(3) More generally we make the tensor product of an
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irreducible supertableau T" describing an irreducible typical
or atypical representation of OSP(2|2p) for which the
SO(2) ® Sp(2p) content is known by the one-box supertab-
leau F. We reduce the tensor product, taking into account
the invariance of the bilinear even form G. When the sub-
traction of the invariant subspaces due to the invariance of G
cannot be performed, we are in a case of nonfull reductibility
for the tensor product and we get nonfully reducible repre-
sentations to which correspond pairs of atypical supertab-
leaux forming generalized atypical supertableaux. This situ-
ation is analogous to that found with the superunitary
groups SU(n|m).%°

IV. IRREDUCIBLE SUPERTABLEAUX OF OSP(2|2p)
(Refs. 11 and 13)

(1) The class I Young supertableaux of the orthosym-
plectic group OSP(2|2p) have one row and p columns of
arbitrary length and they are conveniently parametrized as
indicated in Fig. 2.

(2) The highest weight of the supertableau «, v; is given
by a Young tableau of Sp(2p) with p rows of length
V1,¥2,...,¥, and the eigenvalue k = « of the hidden SO(2)
generator. The Kac-Dynkin parameters of the supertableau
are

a,=k+vy,

a ., =v,—v, ., i=12,.p—1L

al +p = Vp,

The Kac-Dynkin parameter a, can be expressed in terms of
the other Kac-Dynkin parameters and the result is

a, =k+ i a, .

We now discuss the three cases x <p, x = p, and x> p.
(3) When « < p we have the supertableau constraints
Viea="""=W, =0,

which imply the vanishing of p — x Kac-Dynkin parameters

i>k + 1.

As a consequence the value of a, is atypical:

a,, ;=0 for

a1=K+zal+i=z(l+al+i)=‘4x-
T 1

-

A

FIG. 2. Supertableau of OSP(2|2p).
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The supertableaux x < p are associated to irreducible atypi-
cal representations of C(p + 1),

{1+ &|v) — VooV 1 — Ver¥,,0,...,0}.

These representations are self-contragradient and have
2k + 1 levels in the eigenvalues of K.
(4) When « = p the value of q, is typical

P P 1
a, =p+201+i=21(1+al+i)=‘2—(Ap_.1 +Bp_1).

The supertableaux x = p are associated to irreducible typical
representations of C(p + 1)

{V] +p|V1 - Vz,--.,'Vp}.
These representations are self-contragradient with 2p + 1

levels in the eigenvalue of X.
The dimension of the supertableau x =p is

2PN (vyyv, ),

where N(v,,...,v,) is the dimension of the Sp(2p) Young
tableau defining the highest weight.

(5) When « > p the Kac-Dynkin parameter a, is either
typical or atypical of type B;. If a, = B; then x = «; with

K=2p—j+vi,; Jj=0l.,p—1
At fixed values of v;,v,,...,v,, we have p possible atypical
values for x> p.

(6) Consider the case x > p typical. As a consequence of
the reductibility O(2) =>SO(2), the typical supertableaux
of OSP(2|2p) are associated with a direct sum of two contra-

gradient irreducible typical representations of C(p + 1) giv-
en by"*

i +«lvi —vpev, oy, + 20 — &y, — vy, 1

The two contragradient representations have the same di-
mension and the dimension of the typical supertableaux
K>pis

22+ IN(v,,., ).

V. GENERALIZED SUPERTABLEAUX OF OSP(2|2p)

(1) We now suppose that the supertableaux T, is atypi-
cal of type B;,

K=k, =2 —j+v
As aresult of the tensor product method 7', is always simul-
taneously produced with a second atypical supertableau 7,
and the pair (T',,T,), called a generalized atypical supertab-
leau, describes a nonfully reducible representation of
Clp+1).

Choosing the notation T, T, such that & > x® we study
the relation between T, and T,. For that purpose it is conven-
ient to distinguish the two cases v, , ;>1and v, _, =0.

(a) Case v, ,;>1: Let a be the largest non-negative in-
teger such that for the supertableau T,

Viej = " =Vigjira OKa<p—1-—j.

The supertableau 7, is obtained from 7, by suppressing
1 + a boxes in the first row,
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K2 =,V _ (1 4+ a),
and 1 + a boxes in the (1 + v, , ;)th row,
vi=ov,—1, for 14+j<iKl+j+a,

the other parameters v, remaining as for T,.
The value «'? is also written

KP=2p—j+v,,,—(1+a)

=p—((j+a)+viijia—1
and the supertableau T, is atypical of type B; , . In this case
we have

PENPC NG
An example with @ = 0 is shown in Fig. 3.

(b) Case v, ,; =0.: The supertableau 7, is obtained from
T, by suppressing 2(p — j) boxes in the first row,

=2 —j, =}
and the parameters v,,v,,...,; are identical for T, and 7.

The supertableau T, is atypical of type 4;. In this case
we have

K“) >p> K(2).

A generalized atypical supertableau of this category is
represented in Fig. 4.

(2) The generalized atypical supertableaux x> x> p
are associated with a direct sum of two contragradient non-
fully reducible atypical representations of C(p + 1) with
four atypical components each,

[C,+2C,+Gle [—és + 2Ez +_61]-

The Kac-Dynkin parameters of the components C, and
C, are, respectively, those of the supertableaux T, and T,.
For the component C, these parameters are those of the
atypical supertableau T, obtained from 7, as 7, itself has
been obtained from T;. Let us discuss separately the cases
v, ,;»2and v, ; = 1, the parameter v,  ; referring to the
supertableau T',.

(a)Casev,,;>2: Wedefine asa and 8 the smallest non-
negative integers such that

Vigj—Vayjsa>ls

0<agB<p—1—j.
Vigj = Vayjsp22

1

!

*

n£=2p—j* \v‘q.

L

v,
4

FIG. 3. Generalized atypical supertableau x"' > k@ > p.
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1 K- 2p-j

¢

FIG. 4. Generalized atypical supertableau "' > p > k%,

(a-1)a<p:Wehavea, . ;. , =1l,a,,,, s>1.Forj >0
the components C,, C,, and C; are the following:

Clajlay...a, ,;,0,..04, ;. , = 1,0,..0,

a, +j+B""’al +p}’

Cy{a, — 1 —ala,,....q, +; +1,0,..,0,0,0,...,0,
Ay 4 jpprdy 4o
Cy{a, — 2 —Blay,....a, +; +20,..,0,0,0,...,0,
@ 4j4p = Luuas o},
where the Kac—Dynkin parameter a, of C, is given by

P
2 ay ;.

J
ay=2p—j+ya,;+2+2
1 1 €748
The atypicities of the components C,,C,,C;, are, respec-
tively, B;,B; , ,,B; | 5-
(a-2) a=p: We havea, _ ;, ,>2. Forj >0 the compo-
nents C,, C,, and C; are the following:
Cla))ay...a, ;0,085 ;¢ arsy 4 p )

Cya, —1-ala,....a, ; +1,0,...,0,

a2+j+a - 1,...,(11 +p}’
Cyla, — 2 —alay,...a, . ; +2,0,...,0,
a2 +j+a 2,"-’01 +p}’

where the Kac~Dynkin parameter a, of C, is given by

P
z a, ;.

1+j+a

J
al=2p_j+zal+i+2
1

The atypicities of the components C,,C,,C; are, respec-

tively, B;,B; , ,.B; , ,-
(b) Case v, ;=1 Using the same parameter & as pre-
viously, we havea, , ;, , = 1 and

i22+j+a.

Forj > 0 the components C,, C,, and C; are the following:
C{20 —j+ 1 +v|a340, 1 ;0,...0,85 4 ;4 o = 1,0,...,0},
C {27 —j—a + v |ay...a, . ; + 1,0,..,0,0,0,...,0}
Clj+a+vay..na, ; + 2,0,..,0,00,..,0},

a,,; =0, for
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where the parameter v, of the first column of T, is given by

'—1+2a1+1

The atypicities of the components C,,C,,C; are, respectively,
B;,B, , ,4; . o Let us notice that, in this case, the compo-
nent C, is self-contragradient, C, = C;.

(3) The contragradient components C,,C,,C, are ob-
tained by the general relations given in the Appendix A. We
define as @ and & the two largest non-negative integers such
that

Vigjua =" FV14; 7 F Vigjtar
and we study separately the two cases @ < jand @ = j always
forj>0.

(a)Cased < j:Wehavea, , ;_z>landa,,;, ,>1.For

j >0 the components C,, C,, and C, are the following:
Cyla, + 1 + alay..ay 1 j_7:0,...,0,

Luway o,k
Cyla)lay..s8 1 2,0,--:0,0,0,...,0,

a,.;=10,.,08; 5,0 —

aZ+j+a9""al+p}’

Ca, — 1 —@lay....a, . ;_z — 1,0,....0,0,

@ =10,.,08; 4 ;1 sty 4 s

where the Kac-Dynkin parameter @, of C, is given by
ji—a
ay=j+ Y a.;
1

The atypicities of the components C,,C,,C, are, respec-
tively, 4, , ..4;,4; 5.

(b) Case @=j: We have a, , ;, ,»1 and a, ., =0 for
KiKj+a. o

Forj > 0 the components C,,C,,C, are the following:
C{j+1+al0,..,04a,;=10,..0,

Ay pjra = Loty +p}’

C,{10,..,0,0,0,....0,8, , ; 4 as@1 4 1>
C,{000,..,0,0,2, , ; = 1,0,...,0,0; 1 ; , sy 4 p }-

The atypicities of the components C,C,,C,, are, respective-
Iy, 4,1 a4 Ao

We easily check that when v, , ; = 1 for the supertab-
leau T, the component C, is self-contragradient and it re-
duces to the component C, previously determined in the case
d) v =1

(4) Now we discuss the casej = 0. The general formulas
given in the subsections (2) and (3) have to be slightly
modified. Of course here we have @ = 0 and we distinguish
three cases.

(a) Case v, >2, a < B:

Ci{a,0,...,.04a, ., =1,0,...,.0,a, , 5,81, , }

atypicity By,

C,{a, — 2 —«l,...,0,00,..,0,a, , g,....0, , , },
atypicity B,,

Cy{a, —4-5810,..,0,00,..,0a, s — 1,...a;  , },
atypicity B,
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C,{@(0,...0,0,0,...0,3; , groty 1 o},

atypicity 4,

C,{0/0.....0a, , , = 1,0,..,0,a; , g8, ok
atypicity A,

C,{0]1,..,.08, , , = 1,0,...0,a, , gsty 4, }
atypicity A,

where the Kac-Dynkin parameters a, of the component C,
is given by

P
a=2p+2+2 ) ay,;

1+8

(b) Case v, >2, a=8:

C{a,(0,...0,a; , os-s8y 4, }, atypicity By,
C{a;—2—ql0,..08,,, —1,..a,,,}, atypicity B,,
C{a, —4—«|0,..00, , —2,.,8,,,}, atypicity B,,
Cy{al0,....0a, , o — 1,08y 1, ], atypicity 4,,,
C,{0[0,..,0,0, , g5ty 4 p ) atypicity 4o,
C,{0[1,0,...,0,a; , gses8 4 p 1 atypicity 4,,

where the Kac-Dynkin parameters a, of the component C;
is given by

a=2p+2 zp: (ay4:).

1+a
(¢c) Case v, =1:
¢, {2p +2/0,..,04,,, =10,..,0}, atypicity B,
C,{2p — a|0,...,0,0,0,...,0}, atypicity B,,,
C, = C,{z|0,...,0,0,0,...,0}, atypicity 4,,,
C,{0/0....,04, , ., = 1,0,...,0}, atypicity 4o,
c,{0/0....,04, , ., = 1,0,...,0}, atypicity 4.

(5) The generalized atypical supertableaux x' > p > x>
are associated to self-contragradient nonfully reducible
atypical representations of C(p + 1) with four atypical com-
ponents

[C,+2C,+C].

Of course, the atypical component C, is self-contragradient,
C, = C,. The Kac-Dynkin parameters of the components
C, and C, are those of the supertableaux 7', and T,. In order
to determine the component C, we use the same parameter @
as previously, which is here the largest non-negative integer
such that

Vig_e =0, 0Kagj.
It is convenient to study separately the two cases @ < j and
a=j.

(a) Case @< j: we have a, ;_z>1, a;,, =0 for
i»1 +j —@. The component C,,C,,C, are the following:

Cl{zp '_j + Vl 'az,...,al +j_a,0,.n,0},
CAj+ vilag.ay 4 ;_0:..,0},
Clj—1-a+wlay..a,,;_z — 1,0,..8,,; = 1,0,0},

where the parameter v, of the supertableau T, is given by
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j=7
V= Z LS
T

The atypicity of the components C,, C,, and C, are, respec-
tively, B;, 4;, and 4, 5. The dimension of those generalized
atypical supertableaux is

22 N (Vs 5:05000).

(b) Case @=j: The supertableaux T, and T, have only
one row and the atypical components C,,C,,C; are the fol-
lowing:

c.{2p —jlo,...,0},
c,{j0,...,0},
C,{0/0,...,0,a, , ; = 1,0,0}.

The atypicity of the components C,, C,, and C, are, respec-
tively, B;, 4;, and A, The dimension of these generalized
atypical supertableaux is simply 2%+ !,

VI. TOPOLOGY OF THE SET 7 OF SUPERTABLEAUX

(1) Let us define as S the set of representations of
C(p + 1), where the Kac~-Dynkin parameter ¢, is an alge-
braic integer. In the tensor product

R,®R,= @ R,,
7

if R, and R,eS then R;eS for all /’s. Of course the set .§
contains irreducible typical, irreducible atypical, and non-
fully reducible atypical representations.

(2) The set T of supertableaux of OSP(2]2p) describe
self-contragradient irreducible, fully reducible, and nonfully
reducible representations of the set S.

(3) The (2p + 2) X (2p + 2) matrices commuting with
all orthosymplectic matrices of OSP(2|2p) are, by the Schur
lemma proportional to the unit matrix I,, , ,. The only pos-
sibilities on the field of real numbersarel,, ., and —1I,, , ,.
Therefore the center of the orthosymplectic group
OSP(2|2p) is isomorphic to Z, and the two groups
OSP(2|2p) and OSP(2|2p)/Z, are locally isomorphic.

(4) As afirst consequence the set .S of representations of
OSP(2|2p) can be divided into two classes S, and S by
using a linear combination C of the Kac-Dynkin parameters
defined by

C= Y ja.
1

For the class S,,C is even and for the class S,C is odd.

(5) As a second consequence the set T of supertableaux
of OSP(2|2p) can also be divided into two classes T, and T
by using now a parameter N counting the total number of
boxes of a supertableau of 7.

N=K+2P:vj.
1

For the class T, ,N is even and for the class T ,N is odd. Of
course the class T, (Tp) supertableaux are associated to
self-contragradient representations of the class S, (S ).

(6) The supertableaux of the set T are generated, by
tensor product, from the one box supertableau of the funda-
mental representation:
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[ Jers, w10,...00es,.

The supertableaux of the class T, are the supertableaux
of the factor group OSP(2|2p)/Z, and they are generated,
by tensor product, from the two-box supertableau of the ad-
joint representation.

eT,, {2/1,0,.,0}S,.

S

(7) Let us remark that, by construction, the atypical
supertableaux T, and T, forming a generalized atypical su-
pertableau differ by an even number of boxes and therefore
T, and T, belong to the same class. As a consequence the
notion of class applies to generalized atypical supertableaux.

VIIl. CONCLUDING REMARKS

We have studied the Young supertableaux of the ortho-
symplectic groups OSP(2|2p), p>2, and we have deter-
mined the relation between these supertableaux and some
self-contragradient representations of C(p + 1): (i) irredu-
cible typical and atypical; (ii) fully reducible typical; and
(iii) nonfully reducible atypical.

As previously in the case of superunitary groups only a
subset of representations of C(p + 1) is described by super-
tableaux. Of course, this subset is closed under the tensor
product and it possesses a structure in two classes.

The supertableaux of the orthosymplectic groups
OSP(m|2p)m>3 can be analyzed with the same techniques.
The simple case of irreducible supertableaux has been treat-
ed by Farmer and Jarvis.'® That of generalized atypical su-
pertableaux is nontrivial especially with the appearance of
degeneracies in the spectrum of the atypical values.”® This
work is now in progress.

ACKNOWLEDGMENTS

The author takes this opportunity to thank Guido Al-
tarelli, Nicola Cabibbo, and Luciano Maiani for the hospi-
tality extended to him at the University of Rome where part
of this work has been done.

APPENDIX A: CONTRAGRADIENT IRREDUCIBLE
REPRESENTATIONS

As a result of the tensor product method we are able to
determine the lowest weight of an irreducible representation
R of C(p + 1) or, equivalently, the highest weight of the
contragradient representation R of R.

It is convenient to describe the highest weight of R(R)
by a Young tableau Y(¥) of the symplectic group Sp(2p)
and the largest eigenvalue k(k) of the SO(2) generator.

1. R and A are typical
This case is well known and we simply have'*
Y=Y, k+k=2p.

In the reduction OSP(2|2p) = SO(2) @ Sp(2p) the typical
representations R and R have 2p + 1 levels in k. In the de-
scription with Kac-Dynkin parameters we get
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R={ay|ay,...a, ., },
R=1{a,|ay,....a, ., },
with the relation

P
a,+8,=2p+2¥a,,
T

The particular case of a self-contragradient typical represen-

tation is obtained when k = k =p.

2. Ris atypical of type 5,

We have

ka=2p—j+ v
Let us define for the Young tableau Y the largest non-nega-
tive integer @ such that

Vigj—a = """ "=Viqps 0<ax .

Then the contragradient representation R is atypical of
type 4;_5 and the highest weight of R is defined by

_}_’[17,. =v,+1, for 1+j—a<igl+j,

for the other /s,

kx=2p—~k, — (1 +a@).

In the reduction OSP(2|2p) =S0(2) ® Sp(2p) the two
contragradient representations R and R have 2p — @ levels
in k.

For the description of R and R with Kac-Dynkin pa-
rameters it is convenient to distinguish the two cases @ < j
and @ =j.

(a) Case@ < j:

Vi =vy,

R {01, TTay +j—5’0w-:0’a2 oy +P}’
R {b‘l' e ay +j—@ — l,o,...,az +j + l)-.-,al +p},
where

j—a P
a=2p—j+ ; a,;+2 z A .

i+
j—&
a=j—a-—-1+ Z ay 4
1

(b) Case @=j:

R {a1|0,...,0,a2+j,.--,al.,_,,},

R {0)0....,0,a, P 1,...,a,+p},
where

p
a=2p—j+2 Z Qi

i+
3. R s atypical of type 4,
We have
kA =j—‘ Vl +j°

When v, , ; = 0 the representation R is self-contragra-
dient and in the reduction OSP(2|2p) =S0O(2) ® Sp(2p) it
contains 2j + 1 levels in k.

When v, , ;> 1 we define, for the Young tableau ¥, the
largest non-negative integer @ such that

Oa<p —1—j.
Then the contragradient representation R is atypical of

Vit; = " =V gjtar
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type B; , , and the highest weight of R is defined by
- {17,~ =v;,~1, forl+jgi<l+j+a,
v; =v;, fortheother s,

kx=2—k, — (1 +a).

In the reduction OSP(2(2p) =S0(2) ® Sp(2p) the two
contragradient representations R and R have 2p — a levels
ink.

For the description of R and R with Kac-Dynkin pa-
rameters it is convenient to distinguish the two cases j >0
andj=0.

(a) Casej > 0:

R {a\lay..sa, 0,08, Ly goeensy 1 p )

R {al|a29~--’al +Jj + 1,0,...,0,02 +iva T l,...,a, +p}’

where

J
a, =j+§al+i’

P
Z_ a4

G =p—j—a—1+Sa,, +2
1 l+j+a
(b) Case j=0:
R {00,..,0,8; , gy 4 s
R {@,|0,-.0,a; , o — 1,8y, , 1,
where
P

ay=p-a+2 ) a.,
14+a
Of course the formulas of subsections 2 and 3 are comple-
mentary.

APPENDIX B: GENERALIZED ATYPICAL
SUPERTABLEAUX OF OSP(2/4)

As an illustration of the general expressions given in Sec.
V we give the complete list of the generalized atypical super-
tableaux of OSP(2|4) with their atypical components. We
have two possible atypicities for the supertableau T',.

(i) Atypicity By, «V=4+v,

The parameter @ is zero and for the parameters a and 8 we
have O<a<B<1.

(ii) Atypicity B;, «"=3+w,.

The parameters ¢ and S are zero and the parameter @ can
take two values 0<a< 1.

1. The supertabieau 7, has the atypicity B,

We have six possible cases.
(a)vi 32 v, —v,>2, a=LB=0:
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[{2v, + 4|v; —vovo} +2{2v; + 2|v; — v, — v} + {20 v, — v, — 2, }]
$ [{0'1/1 - V2 e 1,1/2} + 2{0|V1 - V2,V2} + {0'1’] - V2 + l,VZ}].
(b)v,>2, vi—v,=1, a=0 p=1

11

[{2v, + 4|1y, — 1} +2{2v, + 2|0,v, — 1} + {2v, — 1|0, — 2}] @ [{0]0,v, — 1} + 2{0|1,v, — 1} + {0|2,v, — 1}.
(c)v,>2, vi=v,, a=B=1:

A1)

[{2v, + 4{0,v,} + 2{2v, + 1|0y, — 1} + {2v, — 2|0,v, — 2}] @ [{1|0,v, — 1} + 2{0]0O,»,} + {O]1,»,}].
(d} V1=1=‘V2, a=1:

L | BN
1

[{610;1}70 + 2{3|0;0}10 + {1 |0’0}6]96 @ [{1'0,0}6 + 2{0‘0,1}10 + {0| 1’1}70]96'
fe)vi=1,v,=0 a=0:

mE—
[{6]1,0} 4 + 2{4(0,0},5 + {0]0,0},150 & [{0/0,0}, + 2{0[1,0},5 + {0]2,0}45]50-

) v, =0:
[T

[{4‘010}15 + 2{0( ‘0»0}1 + {0| 1’0}15]32'

2. The suptertableau T has the atypicity B,
We have again six possible cases.
(a) V2>2, V; —Vz) ], E—_—'o-'

]

L

[{vi+ v+ 3y, — vz,vz}.+ 2{vi+ v+ 2y — v+ Ly, — 1} 4+ {v; + v, + Ly, — v, + 2,9, — 2}]
e[{vi—v,+2lv, — v+ Ly, + 13+ 2{v, — v, + 1|y, — v} + {v, — vy|v; — v, + Ly, — 1}].
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(b) v, 22, v, =vy, a=1:

1]

[{2v, + 30,v,} + 2{2v, + 2|1y, — 1} + {2v, + 1]2,v, — 2}] @ [{2|1,v, — 1} + 2{1{0,1,} + {0[0O,¥, + 1}].

(c)vy=1,v,—v,>1, @=0:

T

[{v, + 4v; — 1,1} + 2{v, + 3|v,,0} + {v, + 1[v;,0}] & [{v; + 1[,,0} + 2{v |, — L1} + {v, = 1|, — 2,2}1.

(d) V2=1=V1; E=I.‘

1]

_—

[{510;1}35 + 2{4| 1’0}45 + {2| 1,0}19]144 (-] [{2' 190}19 + 2{1 |0;1}45 + {O|O,2}35] 144¢

(e) v, =0, v,=1a=0:

L

[{3 + ‘VIIV”O} + 2{1 + 'Vll‘Vl,O} + {Vll‘Vl - 1,0}]-
(f)V1=V2=0, a‘:I.'

mam
[{3/0,0},0 + 2{1]0,0} + {0]0,1} ;5] 5-
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Principal five-dimensional subalgebras of Lie superalgebras
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The analog of s1(2) for Lie superalgebras is osp(1,2), a five-dimensional superalgebra. All
basic classical Lie superalgebras L that contain a principal five-dimensional osp(1,2)
subalgebra are classified. Moreover, the decomposition of the standard representation and of
the adjoint representation of L into irreducible components of the principal osp(1,2)

subalgebra is given.

I. INTRODUCTION

Principal three-dimensional subalgebras of Lie algebras
have turned out to be important in many physical models."
Forinstance, letb .}’ (m = —j, —j + 1,..., +j) beaset of
boson creation and annihilation operators with angular mo-
mentum number; and projection 7. Then, the algebra acting
in the boson space and consisting of quadratic products leav-
ing the total number of bosons invariant is u(2j + 1). If j is
an integer, this algebra contains so(2j + 1). The so(3) sub-
algebra describing the physical angular momentum of the
system in the chainso(3) Cso(2j + 1) Cu(2j + 1) (jeN) is
the principal three-dimensional subalgebra of so(2j + 1)
and u(2j+ 1).

From the mathematical point of view, principal three-
dimensional subalgebras have been discussed by Dynkin?
and Kostant.> Important mathematical applications were
the combinatorial results obtained by Hughes,* and later
generalized by Stanley.’

In the present paper, we investigate principal subalge-
bras of the basic classical Lie superalgebras. The superalge-
bra corresponding with the three-dimensional Lie algebra

s1(2) is the five-dimensional Lie superalgebra osp(1,2), -
sometimes denoted by B(0,1). Basic classical Lie superalge- -

bras were classified by Kac® and are of type 4 (m,n), B(m,n)
C(n), D(m,n), G(3), F(4), or D(2,1;a). Throughout this
paper, we shall use the notation of Ref. 6. It is no longer true
that every basic classical Lie superalgebra contains a princi-
pal five-dimensional subalgebra. This fact was already ob-
served by Stanley,’” but although he finds only one general
class of superalgebras containing a principal osp(1,2), the
series A(n + 1,n), we prove in this paper that several classes
of orthosymplectic Lie superalgebras also have a principal
five-dimensional subalgebra.

The structure of the paper is as follows. In Sec. II, irre-
ducible representations of osp(1,2) are analyzed, and they
give rise to certain inclusion relations of osp(1,2) into spe-
cial linear and orthosymplectic Lie superalgebras. With the
definition of a principal five-dimensional subalgebra in Sec.
111, it is easy to see that the inclusion relations of Sec. II are
principal. Then, a necessary condition for the existence of a
principal osp(1,2) subalgebra is given and analyzed for all
the basic classical Lie superalgebras. In Sec. IV, we give a
realization of the principal five-dimensional subalgebra in

2) Senior Research Assistant of the National Fund for Scientific Research,
Belgium.
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the standard representation for all the classes of Lie superal-
gebras satisfying the condition of Sec. III. Finally, in Sec. V
and in Table I, the main results are summarized.

Il. IRREDUCIBLE REPRESENTATIONS OF osp(1,2)

The orthosymplectic Lie superalgebra osp(1,2) can be
defined as the set of 3 X 3 complex matrices of the form

0 d e
e a b |, 2.1
—dl ¢ —a

together with the multiplication rule
[x, ] =xy—(—1D¥yx, xeL,, yeL,, (22)

where £, 7€{0,1} = Z,, and L = L; & L; is the splitting of
L =osp(1,2) into the even and odd subspace. Here, L; is
spanned by matrices (2.1) withd = e = 0, and L; by matri-
ces with @ = b = ¢ = 0. The even subalgebra equals si(2).
We choose the following basis for osp(1,2):

: 0 0
j()='§_ 1 0 » j+= ’
0 -1

S O
O e

(2.3)

Then, the standard (anti-) commutation relations are given
by
[jo’j:t ] = iji ’ [j+’j—] = 2jo
lJodc12]= 39511 [Jrl512] =911025
[qi 1729 + 1/2] == Zji v 19y29-1721 = — 2o
Irreducible representations (irreps) of osp(1,2) have
been studied by several authors.®® In particular, the irredu-
cible spaces ¥ on which osp(1,2) acts are graded:
V = V5 @ V7. Both V; and Vj areirreducible s1(2) represen-
tations. This is why osp(1,2) irreps are called “dispin.” An
s1(2) module V() is characterized by an integer or a half-
integer: ( j), JeNUJN. Then j is the maximal j, eigenvalue,
and dim V(j) = 2j + 1. All finite-dimensional irreducible
representations of osp(1,2) are determined by®°

2.4)
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[a] = (a)@(a—%) (a=£,1’%r")- (2.5)

For a = 0 [a] = (a) is the trivial representation. Note that
dim V[a] =4a+ 1. (2.6)

The basis vectors of FV(j) are denoted by |jm)
(m= —j,—j+1,..,+j). From other studies® we copy
the explicit form of the actions of the osp(1,2) elements on
the basis vectors of the module ¥V{a],

Joljsm) = m| jm)

(j=aorj=a-1}),
Jelim)=[GFm)(xm+ D1 jm+1);
qi2lam) = (@ —m)'?la—{m+4),

(2.7)

0 [1-(2a)]'2

0 [2'(20—1)]’/2

0 [(2a)-1]"?

0

g_1plam) = — (@a+m)'%la—4m—1),

q1/2la — Lm — 1) = (a + m)"?|a,m), (2.8)

g_ipla—im—14)=(a—m+1)"?a,m —1).
In fact, (2.7) and (2.8) determine the form of the matrix

representation of osp(1,2) on the (4¢ + 1)-dimensional
space V[a]. Taking the following order for the basis of ¥[a]:

),

aa),laa—1),..,la, —a),Ja—La—)

la,a),| Yoo %l La—]} 29)
la —}a—3,..la—4 —a+1),

we find as matrix representatives p(x), for xeosp(1,2),

plJj,) =diag(a,a —1,.., —a,a—La—3,..,—a+}),
(2.10)

P(j+) =

-—-¢—--——+—----—--—-——-———————----—-

I
lo [1-(2a — 1))

plj)=p(j),

2843 J. Math. Phys., Vol. 27, No. 12, December 1986

0

[2.(2a _ 2)]1/2

0

0 [(20__ 1).1]1/2

0

2.11)

(2.12)
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p(?xlz) = PR L S U T D S S S S ——— - - ——— '
1
0 Ja !
{
0 2 !
. . 1
.. .. i
{
I 0 [2a]”2!
plg_12) =
— [24]' 0
—_ [za — 1]1/2 ..

Hence, it is obvious that p is a homomorphism from
osp(1,2) into the Lie superalgebra spl(2a + 1,22) [some-
times denoted as sl(2a + 1/2a) or as 4A(2¢,2a — 1)]. This
was already observed by Stanley.’” As a consequence we have
osp(1,2) Cspl(2a + 1,2a).

Now we want to investigate whether there are in general
any other Lie superalgebras appearing in the last inclusion
relation. First, we consider the situation with aeN. Define
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_..._..............................._---..---.-.{._--._.._-.._-__......-_.....

[2‘1}1/2 "
0 [2a-1]'2
0
... \/i
0 Vi
0
b X2 X 7 R
-
(2.13)
i 0 =
]
| T o
|
| VR
:,
0
|
1 [24]'/?
1
I
1
|
l
l
1
0 |
|
-y o | —
(2.14)
f
the following matrices:
1
-1
[ﬁ1]= -
-1
1
X((2a + 1) X (2a + 1) matrix), (2.15)
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-1
[Bz] = 1
-1
X (2a X 2a matrix), (2.16)
and let
B 0
= . 2.17)

(A1 0 B, (

Then [ B] defines a bilinear form S on the representation
space V[a] of the irrep [a] with the basis given by (2.9).
With V5 = V(a) and ¥; = V(a — }), one can check that (i)
B is homogeneous, B( V5,V; ) = 0; (ii) B is nondegenerate;
and (iii) £ is supersymmetric,
ﬂ(f,g)=(-1)¢yﬁ( g,f)’ VfEV‘pa
Making use of the explicit matrices given in (2.10)-(2.14),
it is easy to verify that for any homogeneous element x of
osp(1,2), one has ‘
[pC)ITIBY+ (= DB p(x)] =0,
‘ Vxeosp(1,2), (£=01). (2.18)

Herein, [ p(x)}” is the supertranspose'® of a graded matrix,
defined by ‘

VgeV..

Y

a b7 Ja& -=¢
[c d] =[b‘ d ] (219
Equation (2.18) implies that
Blpx)-f8+ (= 1D¥B(f,p(x)g) =0,
Vxeosp(1,2),, VfeV,, VgeV. (2.20)

Consequently, the matrices (2.10)—(2.14) are elements of
the orthosymplectic subalgebra osp(2a2 + 1,2a2) contained
in spl(2a 4+ 1,2a), and we conclude

osp(1,2) Cosp(2a + 1,2a) Cspl(2a + 1,2a), ae<N.
(2.21)
When aq is a half-integer, a similar analysis leads to
osp(1,2) Cosp(2a,2a + 1)Cspl(2a,2 + 1), (a—})eN.
(2.22)

I1l. PRINCIPAL FIVE-DIMENSIONAL SUBALGEBRAS

Definition: Let L = Lg & L7 be a basic classical Lie su-
peralgebra. Let L’ = span{jy, j,,/_.q,/29— 1,2} be a subal-
gebra of L with standard relations given by (2.4). Then L’ is
called a principal five-dimensional subalgebra of L if
span{ j,, j,,j_}is a principal three-dimensional subalgebra
of the Lie algebra Lg.

Principal three-dimensional subalgebras of semisimple
Lie algebras are well known. One of the most important
properties® of the principal sI(2) of a semisimple Lie algebra
G is the following: a s1(2) subalgebra of G is principal if and
only if the number of irreducible components occurring in
the complete reduction of the adjoint representation of s1(2)
on G is equal to the rank of G.

With the given definition, it follows immediately from
Sec. II that spl(n+ 1,n), osp(2rn+ 1,2n), and
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osp(2n — 1,2n) (neN) contain a principal five-dimensional
subalgebra. Now we want to find out which basic classical
Liesuperalgebras have a principal osp(1,2). There is actual-
ly an easy procedure leading to a necessary condition. In-
deed, let L be a basic classical Lie superalgebra, and let s1(2)
be the principal three-dimensional subalgebra of L. Let
(a;) + (a,) + -+ + (a, ) be the decomposition of the ad-
joint representation of sl(2) on Lz, and (b,) + (b,)
+ ++* + (b, ) be the decomposition on L. Then a necessary
condition for L in order to contain a principal osp(1,2) sub-
algebra is that the sequence of numbers {a,,...,a,,b,,....b; }
can be split in couples of the form {a;,b,} with b, =a, + },
or in sets only containing the number 0: {0}. This follows
from the fact that every finite-dimensional representation of
osp(1,2) is completely reducible'® in irreps of the form (2.5)
or the trivial representation.
As an example, consider L = spl(m,n) with m>n. Then
L; =sl(m)esl(n)e®C and L7 =5}, ®sl* @sl* @sl,. For
the principal s1(2) subalgebra of Ly, L decomposes as

D+ @+ +(m—=1)

+ M+ Q@)+ +(@m—1)+(0). 3.1)

Since sl{*’ decomposes as ((m —1)/2) and sI{* as
((n — 1)/2), we obtain the following decomposition for L;:

() (o) o+ (5)

m-—n m-—n m+n—2)
1 P —_——) .
H(EF) (B )+ (P

(3.2)

Then it is easy to see that (3.1) and (3.2) can be split in
subspaces of the form (a) + (a—1) only if m=n+ 1.
Hence, only spl(n# + 1,n) can contain a principal osp(1,2)
subalgebra. That it actually does have a principal five-di-
mensional subalgebra follows from Sec. II. Note that the
adjoint representation of spl(n + 1,n) decomposes in
osp(1,2) irreps as follows:

BI+00+ 31+ + [n =41+ (n], (3.3)

and from Sec. Il one derives that the standard representation
of spi(n + 1,n) decomposes in the irrep [#/2] of the princi-

- palosp(1,2).

A similar analysis for Lie superalgebras of type B(m,n)
shows that only osp(2n + 1,2n) and osp(2n — 1,2n) satisfy
the necessary condition. The Lie superalgebras C(n) never
contain a principal osp(1,2) subalgebra if n > 2, and when
n =2 we have C(2) = spl(2,1). The only Lie superalgebras
of type D(m,n) satisfying the necessary condition are
osp(2n + 2,2n) and osp(2n,2n). Finally, among the excep-
tional Lie superalgebras there are simply the D(2,1;a) alge-
bras, which can contain a principal osp(1,2). That the pre-
viously mentioned Lie superalgebras really do contain a
principal five-dimensional subalgebra follows from the fact
that the principal osp(1,2) can be realized in the standard
representation of the Lie superalgebra. This will be discussed
in the following section.
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IV. REALIZATION OF THE PRINCIPAL osp(1,2)

For spl(n+ Ln), osp(2n+1,2n), and osp(2n
— 1,2n), the realization of the principal osp(1,2) subalge-
bra has already been given in Sec. II. From (2.10), one can
see that the standard representation of osp(2n + 1,2n) de-
composes into the irrep [n] when restricted to its principal
osp(1,2). When the adjoint representation is restricted to
the principal si(2) subalgebra of Lz, one verifies that Lg
=s0(2n + 1) & sp(2n) decomposes into
M+@)+ "+ 2-D+D+B)++2n-1,
and that L; = s0,, , ; ®sp,, decomposes into
MXE-HN=P+@ + -+ (2n —1).
Hence, the decomposition of the adjoint representation of
osp(2n + 1,2n) into irreps of its principal osp(1,2) subalge-
bra is given by
(114 31+ -+ [2n — 1T + [§]

+ 3]+ -+ 2n—1]. (4.1)
Similarly, the standard representation of osp(27 — 1,2n)
decomposes into [n — }], and the adjoint representation de-
composes into
114031+ +[2n—=1] 4+ [})

FBI+ o 2]
when restricted to its principal osp(1,2) subalgebra.

Now, consider the Lie superalgebra L
= osp(2a + 2,2a) (eeN). We shall use the realization given
in (2.10)—-(2.14) in order to construct a realization of the
principal osp(1,2) subalgebra of osp(2a + 2,2a). We know
that the decomposition of Lj into irreps of its principal s1(2)
subalgebra is given by (0) + (a) + (¢ —1). Hence, in a
similar notation as in Sec. II, we choose the following basis
vectors for the representation space V:

10,0),{a,a),|a,a — 1),...,|Ja, — a),la — L,a — ),
la—La—3),..Ja—L —a+l).

(4.2)

(4.3)

Then, acting on this basis the elements of osp(1,2) have the
following matrix realization:

’ (4.4)

where p(x) is given by (2.10)-(2.14). Hence, (4.4) is a
realization of osp(1,2) in block matrices of type
[(2a +2) + (2a)] X [(2a + 2) + (2a)). Moreover

[PDITIB I+ (—DEB'1 P (x)] =0,

Vxeosp(1,2),, (4.5)
where
[B']1= (4.6)

The bilinear form B’ defined by (4.6) on ¥ = V; & V3, with
Vs =V(0) + V(a) and V; = V(a — 1), is homogeneous,
nondegenerate, and supersymmetric. It follows that (4.4) is
a realization of the principal osp(1,2) into osp(2a + 2,2a).

For osp(2n,2n), one makes use of the realization of the
principal osp(1,2) in the superalgebra osp(2a,2a + 1),
(a — })eN, and one performs the same construction as in
(4.4) in order to obtain the principal osp(1,2) contained in
osp(2a + 1,2a + 1).

Finally, for the exceptional Lie superalgebras D(2,1;a)
we prefer to use the notation of Scheunert' I'(0,,0,,03).
The connection between I' (¢,,0,,0) and D(2,1;a) has been
given in Ref. 11. The even part of I'(0,,0,,0;) is
sl(2) @sl(2) ®s1(2), spanned by s, , , %, . and u, , . The
odd part is equal to sl, ®sl, ® sl, and its basis vectors are
denoted by R, 5., (a, B,y = +}). The product relations in
I'(o,,0,,05) have been given explicitly in a previous paper. '’
Since (0,,0,,05) are determined up to an arbitrary factor, we
can choose 40,0,0, = 1. Then, the explicit expressions for

TABLE 1. The Lie superalgebras L having a principal osp(1,2) subalgebra. Besides the dimension and rank of L, we also list the decomposition of the
standard representation ps and of the adjoint representation p, when decomposed into irreps of the principal five-dimensional subalgebra.

L dim L rank L Ps Pa

A(nn - 1) 4n? 4+ 4n 2n [n/2] (1] + (2] + - + [n]

== spl(n + 1,n) + 1+ [+ +In=1]
B(n,n) 4n(2n + 1) 2n [n] (+0B31++[2n-1]

= o0sp(2n + 1,27) + @3]+ [+ + 2]
B(n—1,n) 8n> —4n+ 1 2n—1 [n—14] NI+031++2n-1)

=osp(2n — 1,2n) +[a1+ [+ +[2n 1)
D(n + 1,n) 8n* +8n+1 2n+1 [0] + [n] M+ 31+ +[2n-1}

=osp(2n +2,2n) +[31+ 1+ +[2n—1] + [n]
D(n,n) gn? 2n Oy+[r—4) [11+[31+-+[2n-1]

= 0sp(2n,2n) +@31+31+ [ —-3)+ [(n—4]
D(2,12) 17 3 [11+ 1] + )
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the basis elements of the principal osp(1,2) subalgebra of
I'(0,,0,,05) are given by

j“=s“+t”+u“ (;u=0a:t)y
di12= * \/i[aqu:vz,il/z,il/z +02Rj;1/2,¢1/2,i 172

+03R L1 12, 712] - 4.7

V. CONCLUSION

It has been known for a long time that all semisimple Lie
algebras contain a principal s1(2) subalgebra. For basic clas-
sical Lie superalgebras, the analog of a principal sl(2) is a
principal five-dimensional subalgebra osp(1,2). Our analy-
sis shows that not all the basic Lie superalgebras contain a
principal osp(1,2) subalgebra, but only the ones given in
Table 1. For all these cases, we have obtained an explicit
realization of the principal osp(1,2) in the standard repre-
sentation of the Lie superalgebra. Table I lists the reduction
of the standard representations and of the adjoint represen-
tations for the Lie superalgebras L decomposed into irreps of
their principal five-dimensional subalgebra. From this table,
one can notice that the number of osp(1,2) irreps in which
the adjoint representation of a Lie superalgebra L decom-
poses when restricted to its principal osp(1,2) subalgebra is
equal to the rank of L. This is the analog of the defining
property’ of a principal sI(2) subalgebra of a Lie algebra.
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In a paper by Stanley’ some combinatorial properties
concerning unimodality were derived by studying the princi-
pal osp(1,2) subalgebra of spl(n + 1,n) or of pl(n + 1,1)
[sometimes denoted as gl(n + 1/n)]. It is clear that the
analysis of representations of the Lie superalgebras in Table
I may give rise to similar interesting combinatorial proper-
ties, but this study falls beyond the scope of the present pa-
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The Kadomtsev-Petviashvili (KP) hierarchy is an infinite set of nonlinear partial differential
equations in which the number of independent variables increases indefinitely as one proceeds
down the hierarchy. Since these equations were obtained as part of a group theoretical
approach to soliton equations it would appear that the KP hierarchy provides integrable scalar
equations with an arbitrary number of independent variables. It is shown, by investigating a
specific equation in 3 + 1 dimensions, that the higher equations in the KP hierarchy are only
integrable in a conditional sense. The equation under study, taken in isolation, does not pass
certain well-known and reliable integrability tests. Thus, applying Painlevé analysis, we find
that solutions exist, allowing movable critical points. Furthermore, solitary wave solutions are
shown to exist that do not behave like solitons in multiple collisions. On the other hand, if the
dependence of a solution on the first 2 + 1 variables is restricted by the fact that it should also
satisfy the KP equation itself, then the integrability conditions in the other dimensions are
satisfied. “Conditional integrability”” thus means that linear techniques will provide only those
solutions of equations in the hierarchy that simultaneously satisfy lower equations in the same

hierarchy.

I. INTRODUCTION

The purpose of this article is to discuss the integrability
of an infinite set of nonlinear partial differential equations
(PDE’s) proposed recently by Jimbo and Miwa,' and called
the Kadomtsev—Petviashvilli (KP) hierarchy. We shall use
the word “integrable” to mean that a given nonlinear PDE
can be integrated by essentially linear techniques, such as the
inverse scattering method, the “dressing method,”* or var-
ious group theoretical approaches.'* Most of the equations
integrable in the above sense involve only 1 + 1 variables
(the Korteweg-de Vries equation, the nonlinear Schro-
dinger equation, the sine~-Gordon equation, or the equations
of the nonlinear o model being prime examples>*). Some
well known examples of integrable equations also exist in
2 + 1 dimensions. These include, e.g., the Kadomtsev—Pet-
viashvili® equation and the Davey-Stewartson equation,®
which are of considerable physical interest. The only inte-
grable system of PDE’s in n dimensions that we are aware of
is written for n X n matrix functions and has very exceptional
geometrical properties (it generalizes the sine—-Gordon
equation).”®

Since most of the nonlinear equations of physics are
writtenin 3 + 1dimensions or more, the question of whether
such equations can be integrable by linear techniques is of
cardinal importance. In other words, is integrability a low-
dimensional accident or does it occur in arbitrary dimen-
sions?

We shall not delve here into the philosophical implica-
tions of the existence or nonexistence of integrable equations
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in higher dimensions. Rather, we intend to show that one
current belief in the existence of integrable equations involv-
ing arbitrary dimensions in the hierarchies of equations pre-
sented by Jimbo and Miwa,’ in particular the KP hierarchy,
is unfounded, at least in the most direct sense.

In a recent publication’ Jimbo and Miwa have reviewed
and further developed an approach to soliton-type equations
based on the representation theory of infinite-dimensional
Lie algebras and Lie groups. The approach is primarily due
to the Kyoto school and goes back to the original work of
Sato and Sato.” The KP hierarchy of equations is the most
basic one in this approach and this hierarchy, as well as its
solutions, are obtained from the representation of the alge-
bra gi( o ). Other equations and their hierarchies are asso-
ciated with infinite-dimensional subalgebras of gl( « ), such
as the orthogonal and symplectic algebras B_, C_, and
D_, or Kac-Moody Lie algebras. The Hirota bilinear for-
malism'® as well as the formalism of Lax pairs” are incorpo-
rated in this approach in a natural manner.

The KP hierarchy is presented’ in the Hirota formalism
in terms of the D operators, defined by their action on bilin-
ear expressions:

[Dg D2 - )7(x,,%p...) T(X1X5...)
= (3, —8,)° (3, — 3"
(1.1)

The first four equations of the KP hierarchy are written in
this formalism as

oo T (X, X500 )T (X7 X5 ..

* ) l X{ = X, X5 = Xgeer
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[Pt +3D3 —4DD,]r7=0, (1.2)
[(D} +2D,)D,—3D,D,]7-7=0, (1.3)
[D$ —20D} D, —80D3

+ 144D,Ds — 45D D2 |77 =0, (1.4)

[D‘,5 +4D3 D, —32D% —9D? D3 + 36D,D,]mr=0.
(1.5)
Equation (1.2) involves only three variables, x, = x,
X, =Y, X5 = t, and is actually the KP equation itself. Thus
putting
ad a2
=2—1log7r, u=2-—logr,
v ox g Ix? g

we reduce (1.2) to either the potential KP equation

Wynx + OW, W, + 3w, —dw,, =0, (1.6)
or to the more standard form of the KP equation
[4u, —6u Uy — tyyy ], — 3u, =0. (1.7)

Equations (1.3)—(1.5) involve four independent vari-
ables each and higher members of the hierarchy involve
higher dimensions; in principle arbitrarily high ones. This
would seem to indicate that the KP hierarchy, as well as
other hierarchies,’ provide integrable equations involving
arbitrary numbers of independent variables. Moreover, this
impression is given credence by the fact that Jimbo and
Miwa' give a 7-function solution to the entire KP hierarchy
and it has the form of an N-soliton solution.

Our aim is to point out that while the entire KP hierar-
chy, taken together, is integrable,' individual equations in
the series, taken out of context, fail the usual integrability
tests. More specifically we shall investigate the second equa-
tion in the hierarchy, namely (1.3), which we rewrite in
more standard notation as

(1.8)

(we have put w = 2(d /dx)log rand x; = x, x, =y, x5 = 1,
and x, = z].

In Sec. II we perform a Painlevé analysis''~'? of this
equation. As a PDE in four variables it does not pass the test.
Hence the equation does not have the Painlevé property and
has solutions that are not single-valued functions in the
neighborhood of their singularity surfaces. Such behavior is
generally considered to be incompatible with integrabi-
lity.>'"'2 On the other hand, we show that if a solution w of
(1.8) also satisfies the KP equation (1.6) (as a function of x,
», and ) then it will have the Painlevé property (in all four
variables x, y, z, and £).

This leads us to the concept of conditional integrability:
Any given equation in the hierarchy must be considered to-
gether with the lower equations in the hierarchy: the com-
mon solutions of all these equations have the usual integrabi-
lity properties.

In Sec. III we perform a second test. We consider soli-
tary wave solutions of Eq. (1.8) and ask whether they be-
have like solitons with respect to mutual interactions. In-
deed, solitary waves exist for numerous nonlinear PDE’s
and two-solitary wave solutions exist for any equation that
can be cast into Hirota’s bilinear form. The existence of N-

Wiy + 30w, + 3w, w0, + 2w, —3w,, =0
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soliton solutions for N>3 is a quite nontrivial phenomenon
that can be considered to be an indication of integrability.'*
We show that solitary wave solutions of (1.8) can be com-
posed into three-soliton solutions only in the case when the
obtained solution also solves the KP equation (1.6). Thus,
the integrability condition is again satisfied in a conditional
sense only.

In Sec. IV we calculate the group of Lie symmetries of
Eq. (1.8). While this group is infinite dimensional, its Lie
algebra does not have the structure of a loop algebra, typical
for integrable equations in 2 + 1 dimensions. Section V is
devoted to conclusions.

Il. THE PAINLEVE ANALYSIS

According to the ‘“Painlevé conjecture” due to
Ablowitz, Ramani, and Segur'' (ARS), whenever a system
of partial differential equations is integrable by the inverse
scattering method (or related linear techniques), all ordi-
nary differential equations, obtained from this PDE by sym-
metry reduction, will have the Painlevé property. This
means that the only movable singularities (i.e., singularities
depending on the initial conditions) of any solution of such a
nonlinear ODE are poles (in the complex plane of the inde-
pendent variable). This in particular excludes movable sin-
gularities of the branch point type (in addition to essential
singularities). A subsequent extension of the ARS approach
by Weiss et al.'? made it possible to bypass the symmetry
reductions and deal directly with the PDE itself. A singular-
ity manifold ¢(z,,...,z, ) is introduced'? in the complex space
of the independent variables and a necessary condition for
the PDE to have the Painlevé property is that an expression
of the form

1 0
w=-= z a,.¢*
¢ K=o

exists for a general class of solutions of the PDE (fitting
essentially arbitrary Cauchy data). Here @ must be an in-
teger, and the coefficients @, are analytic functions of the
independent variables in the neighborhood of the singularity
surface ¢ = 0. For an N th-order PDE the solution (2.1)
must involve NN arbitrary functions, namely ¢ and N — 1 of
the coefficients a, (the corresponding values of k are “re-
sonances”).!"'? An important improvement of this Painlevé
test is due to Kruskal'® and consists of the requirement that
the function ¢(z,,...,z, ) should be linear in one of the vari-
ables, say z,,, and that the coefficients a, should only depend
on the remaining variables, i.e.,

b=z, +P(z2,_ 1), A =@ (2150021 ), (2.2)

in (2.1). This Painlevé test is completely algorithmic, has
been applied to a host of PDE’s, and has proven to be a most
successful integrability criterion.

We now apply the Painlevé test to Eq. (1.8) of the
Jimbo-Miwa hierarchy. We write the solution w(x,y,z,t) in
the form (2.1) with

(2.1

Pp=x+9t2), a,=a,(ytz). (2.3)
Substituting (2.3) into (1.8) and following the usual proce-
dure,'*? we find
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(2.4)

The “resonances,” i.e., the values at which the recursion re-
lations obtained from (1.8) do not determine the functions
a,,are found tobe k = — 1, 1, 4, and 6. The final step is to
compute the coefficients a,, a;, and a5 from the recursion
relation and to verify that the resonance conditions, i.e., the
compatibility conditions for the existence of the free func-
tions a,, a,, and a, are verified. This is a tedious computa-
tion that is best performed by algebraic computations on a
computer (we used REDUCE as a language). The result is

a=1, a,=2.

a,(y,t,z) = free,
a, = ( - 2¢!¢y + 3¢z - 6a1,y)/12¢y s
ay = (2a,,,¢, — 2a,,¢,,

+ 2¢1y¢yy - ¢yz¢y + ¢yy¢z )/16¢i ’

a, = free.

(25)

The expression for as is too long to reproduce here (it is
available from the authors on request). At the resonance
k = 6 we obtain a condition which is not satisfied identically.
Indeed the resonance condition here is

R= — 2a1,y2¢yy + 2al,yy¢yz + 2¢1y¢y1¢y

- 2¢tz¢yy¢y — ¢§z + ¢yy¢zz =0. (26)
We see that the condition R = 0 is an equation relating the
functions a,(,t,2) and ¢ (y,2,2), rather than an identity. The
conclusion is that Eq. (1.8), taken on its own, does not sa-
tisfy the Painlevé criterion and is therefore presumably not
integrable.

Let us now consider Eq. (1.8) together with the preced-
ing equations in the hierarchy, which in this case is simply
the KP equation (1.6) itself. The KP equation does not in-
volve the variable z, so we fix z =z, and write a singular
expansion for the solutions of the KP equation (which is
well known to satisfy the Painlevé requirement):

1 &, ;
w(xyzet) == > bd",
¢ k=0

$=x+Ptz), by =b Wtz . (2.7)
As for Eq. (1.8), we find
a=1 b,=2,
and resonances at k = — 1, 1, 4, and 6. We have
b, =free, b,=1¢, —142. (2.8)

In the spirit of “conditional integrability” of a nonlinear
PDE, introduced in the Introduction, we now require that
w(x, y, , t) be a solution of the Jimbo-Miwa (JM) equation
(1.8) and simultaneously,for z = z, fixed, a solution of the
KP equation. This means that we must have

Y(nhz0) = y(t.zo) and by (1,1.20) = @, (1t,20)

2.9)

for all values of k. In particular b, = a, implies

¢, =2a,, + 26,0, — 4, . (2.10)
Using condition (2.10) we can show that a; = b;; we
then choose a, = b, (since both are free) and obtain a5 = bs.
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At order k = 6 the compatibility condition for the KP equa-
tion is satisfied automatically (the KP is integrable). More-
over, the compatibility condition for the JM equation (1.8)
at k = 6 is now also satisfied, i.e., R = 0in (2.6) is a conse-
quence of (2.10).

We see that “conditional integrability” in the case at
hand means that Eq. (1.8) satisfies the necessary conditions
for the Painlevé property only for a subclass of solutions.
These are solutions for which the evolution of the singularity
manifold ¢ in the z direction is determined by Eq. (2.10) for
initial data given at some z = z, by an arbitrary function of y
and ¢. For integrability in the usual sense ¢ should be an
arbitrary function of all three variables y, ¢, and z.

Ill. THREE-SOLITON SOLUTIONS

We now turn to the integrability criterion related to “so-
liton” solutions. We are taking the attitude that solitary
waves for a partial differential equation only deserve to be
called solitions if N-soliton solutions exist for this equation
for all values of N. Following Hirota'® we look for the V-
soliton solutions in the following way. We define the quanti-
ties

m=kx+ly+mt+nz (i=12,..), 3.n

where the sets of numbers (k,,/;,m;,n;) satisfy the following
dispersion relations:

Pyp(kpdiom)) =k?+313 —4lim, =0 (3.2)
for the KP equation (1.2) and
Py (kplymn)=(k?+2m)l, —3kn;, =0  (3.3)

for the “Jimbo-Miwa equation” (1.3). Using the variables
7; we define the following solutions.

A. “One-soliton” solutions
The form is
r=1+4em. (3.4)

This provides a solution of the KP equations (1.2) if (3.2) is
satisfied (z is then a parameter that can be absorbed into the
soliton phase). The function  is a solution of Eq. (1.3) if
(3.3) is satisfied and a common solution of both equations if
(3.2) and (3.3) hold simultaneously.

B. “Two-soliton” solutions

The form is
F=14em et A et (3.5)
with
L= Pkl — by, —mym —n) (36

P(k, + k1, + L,my + my,n, + ny)
If Pin (3.6) is taken to be Pyp and (3.2) is satisfied for
both sets (k;,/;,m;) (i = 1,2), then 7in (3.5) is a solution of
the KP equation (1.2). Similarly, if P is Py and (3.3) is
satisfied, then 7 in (3.5) is a solution of the JM equation
(1.3) [whether (3.2) is satisfied or not]. If both (3.2) and
(3.3) are satisfied then the two expressions for 4, coincide
and 7is a common solution of the KP equation (1.2) and the
JM equation (1.3). The common value of 4, in this case is
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_ kiR Oy = k)? = = )?
k3 kG (ky+ko)? — (kdy — Koly)?

3.7)

12

C. “Three-soliton” solutions

If a three-soliton solution exists in the Hirota formalism
then its form must be

r=14+e"+e"+e"+ A"t L 4,em ™
+ A€ T+ A g pAype™ T
Moreover, (3.8) is a solution only if the quantity
Q =Pk, + k, + ks,.. )A ;A 3455 + Plky + ky — ks YA,
4+ PCky—ky 4+ k3o YAy + P(— k) + Ky + k3pen ) A,
(3.9)

(3.8)

vanishes identically.

If Pis Pyp in (3.9) and (3.2) is satisfied for all three sets
(k;,l;;m;) (i = 1,2,3), then the quantity Q does indeed van-
ish. This is of course well known: the KP equation does have
three-soliton solutions (and N-soliton solutions for any N).

If, on the other hand, Pis P,y in (3.6) and (3.9) and we
request only that (3.3) be satisfied for the three sets
(k;m; om0l (i = 1,2,3), then Q is not identically zero. We
do not reproduce its value here (obtained by a REDUCE cal-
culation) since it is longer than this entire article. Thus, in
general (3.8) is not a solution of the JM equations (1.3).

Let us now require that (3.2) be satisfied, in addition to
(3.3), and let Pbe Py, in (3.9), as before. For 4 |, we obtain
the expression (3.7) (forboth Py, and Py, ). In this case we
find that the quantity Q in (3.9) does vanish and hence 7 of
(3.8) is a solution of the JM equation (1.3). This was to be
expected: we simply reobtain the N-soliton solutions (for
N = 3) obtained more generally by Jimbo and Miwa' for the
entire KP hierarchy.

The crucial point that we are making is that the vari-
ables 7, for these N-soliton solutions must satisfy both (3.2)
and (3.3). Solitary waves of the JM equation (1.3) [or
equivalently (1.8) ] do not, in general, interact as solitons in
collisions of three or more at a time. Thus, the criterion of the
existence of multisoliton solutions again leads to the condi-
tional integrability of Eq. (1.3). Integrability in the usual
(unconditional) sense would imply that all solitary wave
solutions of the equation should interact like solitons in in-
teractions of arbitrary multiplicity.

IV. THE SYMMETRY GROUP

Standard algorithms exist for calculating the group of
Lie symmetries of a differential equation, or system of equa-
tions. Here we consider the symmetry group in the most
direct sense of the word, i.e., the group of point transforma-
tions

X'=A(xw), w=0xw, (4.1)

such that w’'(x’) is a solution, whenever w(x) is one.

The symmetry groups of the Kadomtsev—Petviashvili
equation,'® the Davey—Stewartson equation,'® and other in-
tegrable equations in 2 + 1 dimensions have recently been
calculated. They are all infinite-dimensional and have a spe-
cific loop group structure. More specifically, the corre-
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sponding infinite-dimensional Lie algebras involve arbitrary
functions of time ¢. When these are expanded into formal
Laurent series we obtain a structure that can be identified
with a subalgebra of an affine-type Kac-Moody algebra
(with no central extension).'

Let us now turn to the Jimbo-Miwa equation (1.8). As
usual'*'” we look for a general element of the Lie algebra of
the symmetry group in the form

V=§lax +§Zay +§3az+§4at+'/’aw’ (4.2)

where £; and ¢ are functions of x, y, z, ¢, and w. The consid-
ered equation (1.8) is a fourth-order one; hence we need to
construct the fourth prolongation of the vector field (4.2)
and request that it annihilate the equation on the solution
space:

P’MV'A(XJU) IA(x,w) =0 = 0 ’ (43)

where A (x,w) is the right-hand side of Eq. (1.8). Applyinga
previously written MACSYMA package'® to the case of the
Jimbo-Miwa equation (1.8), we obtain a system of 25 sim-
ple first-order linear partial differential equations for the
functions &; and ¢. Solving these determining equations we
find that the symmetry algebra is infinite dimensional. It
depends on five arbitrary constants, three arbitrary func-
tions of one variable f| (z), f,(z), and g(¢), and one function
of two variables H(z,t).
A basis for this Lie algebra is given by the operators

P, =4, P,=43, P,=43, P,=4,,
D,=x3d, +228, + 3t9,,
D,=x38, —29,+3t3,,
X(f) =A2)3, +3f7 (2)t,

- [3f1 @x+3f7 2)]d, ,
Y(f) =£(2)8, —f; (2)yd,, fi#0,
Z(g) =g(t)o, +38'(1)xd,, &#0,
W(H) = H(z,t)d,,

(4.4)

(the prime indicates differentiation with respect to the argu-
ment).

The algebra (4.4) can be integrated in a simple manner
to provide the invariance group of Eq. (1.8). Thiscanin turn
be used to generate solutions, to perform symmetry reduc-
tion, etc. We see. that all expected symmetries are present:
the four translations P; (i = 1,...,4), two independent dila-
tions D,, D,, Galilei transformations in the x direction for
g(t) = t, “quasirotations” in the z-y plane for f,(z) = z, orin
the z-x plane for f5(2) = z, etc. The generator W(H) simply
expresses the fact that an arbitrary function of z and ¢ can be
added to any solution.

In any case, our purpose is not to solve Eq. (1.8), nor to
analyze its symmetry group in detail. We wish simply to
point out that the loop group structure that occurs for the
KP equation and other integrable equations in more than
1 + 1 dimensions is absent here. The reason is that the loop
group structure requires the presence of terms of the type
h(t)d, + ...,ork(z)d, + ... that are absent in the case under
consideration.
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V. CONCLUSIONS AND COMMENTS

In summary let us réeemphasize that the Painlevé crite-
rion, the “multisoliton” criterion, and symmetry group con-
siderations all agree to suggest strongly that Eq. (1.8) is
“conditionally” integrable, rather than integrable on its
own. The integrability properties only manifest themselves
in solutions w(x, y, z, t) that for z = z, fixed are also solu-
tions of the KP equation (1.6).

To show that this is not an isolated occurrence, we recall
that a similar situation, conditional integrability, has been
encountered earlier,'® but for two equations involving the
same number of variables. In fact these equations-can be
obtained from the same KP hierarchy by reductions. More
specifically these are what Jimbo and Miwa call two-reduc-
tions: one considers a situation in which there is no depen-
dence on any of the even indexed variables. Starting from the
KP equation (1.2) we obtain the Korteweg—de Vries (KdV)
equation in Hirota form:

[Dt —4D\D,]77=0, (5.1)
while Eq. (1.5) reduces to
[P$ —4D} D, —32D3}rr=0. (5.2)

Conditional integrability in this case simply means that
all the solutions of the integrable KdV equation (5.1) also
provide solutions of (5.2). Thus, let us assume that some
T==1, is a solution of the KdV equation (5.1). Substituting
into (5.2) we obtain

[D$ +4D} Dy —32D3 ) 197o = 8(X2)75 , (5.3)

where g(x,) is some function of x, only. Moreover, G(x;)7,
will be a solution of (5.1) for any function G(x;). Substitut-
ing G(x;) 7, into (5.2) we obtain

—64(InG)" +g=0. (5.4)

Hence, choosing G(x;) so as to satisfy (5.4) we obtain a
function 7 = G(x;) 7, satisfying both (5.1) and (5.2).

As was argued earlier,’® Eq. (5.2) is presumably not
integrable as it stands since (i) it does not have the Painlevé
property; and (ii) in general its solitary waves cannot be
combined to provide three-soliton solutions.

Indeed, the only equations of the form

(ADS +pD} Dy +vD3)(r7) =0 (5.3)

that satisfy both of the above criteria have either A =0, or
Av = —u?/5, whilein (5.2) we have Av = — 2u?.

The situation with three-soliton solutions of (5.2) was
analyzed in detail in the Appendix of Ref. 18. In a nutshell,
this equation, being second order in time, has two types of
solitary wave solutions. The first type also satisfies the KdV.
These solitary waves behave like solitons and provide N-
soliton solutions for any . The second type of solitary wave
has a different dispersion relation and these waves do not

2852 J. Math. Phys., Vol. 27, No. 12, December 1986

behave like solitons in collisions of three or more waves.
As afinal comment we mention that for integrable equa-
tions in the usual sense, linear techniques provide large
classes of solutions, e.g., all solutions decaying sufficiently
rapidly at infinity, or all solutions satisfying certain quasi-
periodicity solutions. For conditionally integrable equa-
tions, considered on their own, only a small subclass of solu-

- tions is obtained. Indeed the condition (2.10) for the

singularity surface, or (3.2) together with (3.3) for the soli-
tary wave parameters for the JM equation (1.8), are very
serious restrictions and are certainly not satisfied by a gen-
eric solution. We conclude that the problem of the existence
of genuinely integrable scalar equations in more than 2 + 1
dimensions remains open.
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Prolongation structures of the sine~Gordon equation, the Ernst equation, and the chiral model
are systematically discussed. It is shown that the prolongation structures generate the Kac—
Moody algebra for the sine-Gordon equation and another type of infinite-dimensional algebra
for the Ernst equation. This algebra includes the Kac-Moody algebra and the Virasoro algebra

as its subalgebra.

1. INTRODUCTION

As is well known, completely integrable models in two-
dimensional space-time have common features. They have
the Bicklund transformations, an infinite number of con-
served quantities, and the Lax pairs. They can be solved by
the inverse scattering method or the Riemann—Hilbert trans-
formations. There are the Kac-Moody algebras associated
with these integrable models.

In this paper we will discuss another common feature of
integrable models called the prolongation structure.'™ It
will be shown that the structure plays important roles in
obtaining the Bicklund transformations and the Lax pairs,
and that it reveals infinite-dimensional algebras that these
models have implicitly.

As an introduction to the prolongation structure of the
nonlinear equation we will consider the Bicklund transfor-
mation and the Lax pair of the sine~Gordon equation. We
know that the Biacklund transformation of the sine-Gordon
equation is given by

0 = — 3 — Usinj(p— 4",

1.1
3,4’ =3,4+ (2/A)sin}(¢ + ¢') , -

where A is an arbitrary constant. Now we will define a pseu-
dopotential ¢ by

g=tan[(4 + ¢')/4], (1.2)

then it can be shown that g satisfies the Riccati-type differen-
tial equations

dsq=Acosdg+ (A/2)sing(g°— 1),

3,4 =19,8(¢ + 1) + (1/A)q, (-9
and that (1.1) can be rewritten in terms of g as
O0gd' = — 00+ [247(¢* + 1)]
X {2g cos ¢ + (¢* — 1)sin ¢}, (1.4)

3,4’ =3,6+ (4/1)¢/(¢* + 1) .
Next we will express ¢ in terms of two functions ¢, and

¥,
9=v/v;, (1.5)
then we have a linear auxiliary equation (the Lax pair)
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sin
af'p—— sm¢ -cosﬁ]'//' (1.6)
P ¢___[ 1/4 ]¢, ’
1/11
where ¢ = (,p2

Thus we can see that the pseudopotential plays an im-
portant role in the discussions of the Bicklund transforma-
tions and the Lax pair. In this point of view it is valuable to
find a pseudopotential for a nonlinear equation. This prob-
lem to obtain a differential equation for a pseudopotential
can be formulated in the method of the prolongation.

In the next section we will discuss the prolongation
structure of the sine-Gordon equation and show that it gives
an infinite-dimensional algebra associated with the sine-
Gordon equation as well as the Riccati-type equation (1.3).

In Secs. III and IV prolongation structures of the Ernst
equation and the chiral model are discussed.

Il. SINE-GORDON EQUATION

The field equation of the sine~-Gordon equation is given
in terms of two-forms a; (i =1,2):

a,=d¢Ndé —wdyNdE

a,=dmrAdy +singdyANdE .

For the systems of two-forms (2.1) we will assume that pro-
longation forms can be given by oneforms Qf
(i=12,..p),

O = —dq' + Fi(md.q)dn + G'(n,4,9)dE, (2.2)
where p can be determined later, and F‘ and G * are functions
of field variables ¢, and the newly introduced pseudopoten-
tials 4.

From the integrability condition of ¢/, which can be ex-
pressed as

dQel(Q,a), (2.3)

where I(Q,a) is an ideal generated by the set {a'} and {Q7},
we have differential equations for F/and G'

3¢ F'=0, InG'=0,
G/'OF ~F3,G' +singdrF'—md$G'=0.

(2.1)

24)
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In (2.4) 3, = d/dg;. By solving these equations we find*
F=X+X\m, G'=Yising+7Y! cosg, (2.5)

where X! and Y (@ =0,1) are functions of ¢’ only, and
they are assumed to satisfy the following equations:

X59,Y, —YhaX,=X,, X,3Y.—Y,dX,=0,
X, 8, -Yhaxi =Y, (2.6)
X, 8, ~Y,3X,=—7,.

From (2.6) we can see that vector fields in a g-space (a
prolongation space) X, and Y, defined by

d . d
X,=X()-Z, ¥,=Yi(q)-=, 2.7
@ @ 5 2.7)

satisfy the following commutator products (see Appendix
A):

[XO’ Yo] =X1’ [Xor Yl] =0,

[Xl’ Y0]=Yl, [Xl’ Y1]= —Yo.

Thus we find that the set of vectors {X,,Y,} generates an
incomplete set of commutator products, because [X;,X]
and [ Y,,Y,] are not given yet.

In order to constitute a Lie algebra from (2.8) it can be
shown that there are two ways. In the first course we will
show that the set of commutator products (2.8) can be
closed with finite number of vectors X, and Y, (a =0,1),
and that they generate a finite-dimensional Lie algebra. In
the second, on the other hand, we find that there appears an
infinite-dimensional algebra and that (2.8) can be included
in the set of commutator products of the elements. In the
following we will consider both cases and will give explicit
representations of the algebras in the prolongation space.

(2.8)

A. Finite-dimensional algebra

We will define vector fields X, and ¥, by

X2= [Xo:X1], Yz'—' [Yo, Y1] ’ (2.9)
then from the Jacobi identity it can be shown that X, and ¥,
satisfy commutator products

[Xz’ Yi1= —X, [X, Yo] =0, [Y2’X0] =Y,

[Y, X,]1=0, [X,,Y,]=1Y,. (2.10)
Now we will assume that X, and Y, are given by linear com-
binations of X, X, Y, and Y. The coefficients of the linear
combinations can be determined so that X, and ¥, satisfy the
above commutator products (2.9) and (2.10). Thus we find

X2=(1/A2)Y0, Y2= —'AZXI, (2.11)
where A is an arbitrary parameter. With these results we
have the Lie algebra of X, ¥, (a = 1,2);
[XO’ Yo] =X1’ [Xo’ Yl] =0, [Xo: X1] = (1/4 2)Yo »
(X, Yo ]=Y, [X,Y]=—-Y, [Y,Y]=—-1%X,.

(2.12)

In this algebra the vector C defined by C = A 2X, — ¥, com-
mutes with all elements X, Y.

This finite-dimensional algebra can be shown to have a
nonlinear representation in a one-dimensional prolongation

space
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x,=1g9 x-Llp+nl,

A~ g 2 dq

2 P 3 (2.13)
Yo="(¢~-1)— Y =4¢g—,

2 dg dq

and C = 0. In this case F and G have only one component,
respectively, and are written as

F=(1/A)g+ (¢ + D7,

2.14
G=(A/2)(¢° — 1)sing +Agcos ¢. (2.14)

Then we find that the pseudopotential ¢ satisfy the Riccati-
type equations

d,9= 1/ )g+}m(g+ 1),
;g =Agcosd+ (A/2)(¢>~ 1)sing,

(2.15)

which have the same forms as (1.3). As shown already we
can give the Biicklund transformations in terms of ¢ (1.4).

B. Infinite-dimensional algebra

Now we will discuss the second case and will assume
that X, and Y, are linearly independent from X, X, ¥,, and
Y,. Then we have an extended set of vectors that has six
elements X,, Y, (a =0,1,2). The commutator products of
this set, however, are still incomplete since [X,, X,], [X],
X,1, [ Y, Y,], and [ Y, ¥,] are not determined. Here we will
again assume that these commutator products give new in-
dependent vectors and we find another incomplete set of
commutator products. This procedure makes an infinite
number of series and presents an infinite number of vectors
as well as their commutator products.

It can be shown that these vectors generate the Kac-
Moody algebra (4 (I type), and that the algebra can be rep-

(€]
resented in terms of infinite number of vectors T,
(a=123,i=0,+1,+ 2,..., + o) in the infinite-dimen-
sional prolongation space (see Appendix A). With this rep-
resentation the vector fields X, X,, ¥;, and Y, are found to
be given by some elements of the algebra:

(—=1n
Y0= - T2 »

(-1
Yl= Tl .

(2.16)

1) ()]
Xo=T, X\=—-iT;

Then we can see that components of Fand G have the follow-
ing forms:

Fi=}qi""" + (n/2)e?",

Fy= — Jg§*V — (m/Dgf",

Gi= —}gi Vsing+}q/'" Vcosd,
Gy= —4qi'""Vsing—4gi' " cosé,

(2.17)

and that pseudopotentials satisfy equations given by
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(l) (l +1)
d [ (l)] [0 _ 1] [ (t+l)]
0 1] q%”]

—1 ol |gn)’

gt —sing] [4i'""

(i) — cos¢ q%"—,l) )
These results show that there is the infinite-dimensional al-
gebra associated with the prolongation structure of the sine—

Gordon equation, which guarantees the existence of the infi-
nite number of pseudopotentials.

Next we will introduce a parameter-dependent potential
¥(4) by

(2.18)

cos ¢
—sin ¢

%(/1) w . [ (n)]
Bl ,.=_w ™)

Then it can be shown that ¥/(1) satisfies the linear auxiliary
equation (1.6) of the sine~Gordon equation.

In the above discussions we showed that the prolonga-
tion structure of the sine~-Gordon equation provides the fin-
ite-dimensional algebra as well as the infinite-dimensional
Lie algebra. We also showed that the former algebra gave the
pseudopotential of the Bécklund transformations and that
the latter algebra indicated the existence of the linear auxil-
iary equations.

(2.19)

lli. ERNST'S EQUATION
The field equation is given by

(02 +32+ (1/p)3,)E=(1/T)(3,EJ,E +3,EJ,E),
(3.1

where E is the Ernst potential and 27 = E + E *. In terms of
complex variables x' =p — iz, x* =p + iz, this equation
can be rewritten as

We will define new fields a,, b, (i = 1,2) by
a;, = (1/2T3,E, b, = (1/2T)3,E*, (3.3)

then we find that these fields satisfy first-order differential
equations

da, = (a, — b)a, — (1/4p)(a, + a;) ,
d.a;, = (a, — by)a, — (V/4p)(a, +a,),
01b, = (b —a))b, — (1/4p) (b, + b,) ,
by = (b —a))b,— (1/4p) (b, + b,) .

Conversely it can be shown that if a;, b; satisfy the above
equations we can obtain E, which satisfies Ernst’s equation.

Equations for a; and b, are written in terms of two-forms
as
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(3.4)

a, =da,\Ndx" + {a,(a, — b,)

— (1/4p)(a, + ay) Ydx' Adx?,
a, =da, Ndx* + {a,(a, - b,)

— (1/4p)(a, + a,) }dx* Adx',

By =db, Ndx' + {b,(a, — b;) G5
+ (1/4p) (by + by) }dx* Adx',
B, =db, Adx* + {b,(a, — b,)
+ (174 p) (b, + b,) Ydx' Ndx*.
As before we will define the prolongation form (',
Q= —d¢' + F'dx' + G'dx?, (3.6)

then we can obtain prolongation structures for Ernst’s equa-
tion®
Fi=Xla, +Xb, +X45,
G'=Y602+Y11b2+Y‘2’
where X1, Y. (a =0,1,2) are, in general, functions of inde-
pendent variables x', x? as well as pseudopotentials. In this

case vector fields X, ¥,, components of which are given by
X1, Y!, satisfy an incomplete set of commutator products

[Xo, Yo] =Xo—' Yo, [Xls Yo] = —X1+ Yo:

(3.7)

[Xo, 1]1= —X+ Y, [X,Y]=X,-7,, G5
and ‘

[X, Yol = — (1/4p) (X, — Y,) — 8, X,

(X Y] = — (1/4p) (X, - Y,) —d,Y,,

[Xo, Y,] = — (1/4p) (Xo — ¥5) + 0,X,, (3.9)

(X, Yol = — (1/4p) (X, - ¥}) +3:X,,

[Xz, Yz] = azxz - 31Y2 .

Now we will look for the Lie algebras associated with
the sets of commutator products (3.8) and (3.9).

A. Finite-dimensional algebra

Vector fields X; and Y, defined by

X, =[X,X,], Y,=[Y,Y,], (3.10)
are assumed to be given in the linear combinations of X, Y,
(a =0,1) and are found to be
X, = _;2(]’0— Y), Y= _g_z(XO_Xl) . (311

Here the coefficient { remains to be undetermined. From
(3.8) and (3.11) we see that vector fields X, and Y,
(a = 0,1) generate a closed algebra and it can be shown that
in the one-dimensional prolongation space they have their
representations of the form

X1=(§+q)%,

d
Y, = -hY__.
1=(@+¢ )3q

X, = —q(1+;q)ai,
g 3 (3.12)
Yo= —q(1 +§-lq)—a?,

From (3.9) and (3.12) we see that X, =0 and Y, = 0 and
that { is not a constant parameter, but it satisfies
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A= (L/8p)(L%2 1), b= (1/4p5)(E*—1).
(3.13)

These representations of X, and Y, give the Riccati-type
equations of the pseudopotential ¢

dg= —q(1 +§g)a, + (g + )by,

dg=—q(1+§7'Qa,+ (g+¢Nb,.
On the other hand, we know that the Backlund transforma-
tion of the Ernst equation is given by®

a =%{(1—;2>(02+1>+2;20

2
+ =20 1)\/;92+2 : +§29+ 1]a.

(3.14)

(1_—4’_2_)(9_1 92412147, 1)
o + +20E50+1),
, 1

az=—2;76[(1—§2)(92+1)

2
+2e+(1—;2)(o+1)\/02+2i+§ 0+1]

1= ;( s A1+ &2 )
0+1 02+2 0+1]),

~ 8607 + +\/ + - +
(3.15)
q bY|

where 0= (i/p)TT’'. We will introduce

dq(n) — i{(q("— 9] + ,q(n)
+%{(q(n+l) +lq(") iq2n+l))a2+ (q(n+l)
— (1/4p){(n — 2)g{"~? — ng{"}dx" —

dgs” = — (¢}
+4{—

"D 4+ ig{™ +ig{"~)a, + (—
‘"+”+tq""+iq‘"+”)a +(_

+ ig§
- iq(n) + iq(n+ ”)bz}dxz
(1/4 p){ng{” —

igy"~)a, + (gi" " — igf”

0= (*—1)""g+ &)1+ £g)g~ ", which can be shown
to satisfy (3.14), then we can rewrite the Biacklund transfor-
mation in the form>’

g =90t 1 g1
9+¢ 4p q+¢
(3.16)
4= — g(1+¢"'9) 2__Lq(l—.é‘)
g+¢~! 4p S(1+4q)

B. infinite-dimensional algebra

By repeating the same procedure in the previous section

we can show that (3.8) and (3.9) belong to the coupled
(m) (m)
Kac-Moody and Virasoro algebra of T, and D (see Ap-

pendix A) and the X, and Y, are expressed by

Xo=(TCTY4TP), X, =TSV -T™,
- — (—-2) _ p©
X,= — (1/4p)(D D®), (317
Yo=(TO4+T), ¥,=(TV-TP),
Y,= — (1/4p)(D® —D®).

These representations indicate that there are an infinite
number of pseudopotentials that satisfy the following differ-
ential equations:

n— l))bl}dxl

(n+2)g{"*}dx?,
(3.18)

g~ +ig{” + igi"~ V)b, }dx'
{(n+1) + iq{"’ + iq{"* l))bz}dxz
— (174 p){(n —2)g{"~? — ngi™}dx'(1/4 p){ngi™ —

(n+2)g{"+P}dx?.

In this case it can be seen that (3.18) cannot be summed up in terms of the parameter-dependent potential (1), since in
the right-hand side of (3.18) we have terms with coefficients depending on n. However we will consider another kind of

potential ¥(&)

h(§)
¥:(8)
where § is a function of independent variables, then

S crdgr+ 5 onmerogm s

n= — o

_ s )

n= — o

n= — o

(3.19)

(3.20)

In (3.20) d¢ can be determined so that the second term of the right-hand side cancels the n-dependent terms in (3.18). Thus
we find (3.13) again. From (3.18) and (3.20) we obtain a linear auxiliary equation for the Ernst equation

e /D@
—(/2)(1 +$)(a, — by)

+ [ (&£'/2)(a, + by)
—@/2)(1+ ¢ " (a,—by)

which was found before.”

(i/2)(1 = &) (a, —
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— (£/2)(ay + by)
(i/2)(1=¢ "N (a; — b,
— (£ ~'/2)(a, + by)

pac

)]t//dx2, (3.21)
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IV. CHIRAL MODEL
A field equation of the chiral model is given by

3,(g73,8) +3,(g7'9,8) = (4.1)

where g is a r X r matrix field with det g = 1. We will define
new matrices 4 and B as

A=g~'d.g, B=g 'd,g, (4.2)

where Tr A = Tr B = 0, then we find these matrices satisfy
first-order field equations

3.B= —}(4AB — BA) .

These field equations are rewritten in terms of X r matrix
valued two-forms and

a=dAAdx + }(AB — BA)dx \dy,
B=dBNdy + 4(AB — BA)dx Ady .

As in the previous sections we assume that prolongation
forms are given by

(4.3)

(44)

V= —d¢+Fdx+G'dy, 4.5)
where F' and G ' are functions of ¢, 4, and B. Then we have

V(49)G'=0, V(B°)F' =0,
G/9,F' - F'3,G’ (4.6)
+{V(4°,)F' + V(B°,)G'HAB — B4)* =0,
where
; OF' s )
Aa Fl —_—— .-
v (aA“ E 5A°
From (4.6) we have the prolongation structure
=X344, G'=Y)B°, (4.7)
and
(X7, Y] =" (X + )%, — }5,(X + D)7,

(4.8)

where X, and Y ¢, are vector fields in the prolongation
space and are defined by

Xab=XZ'ii', Yb-Y“a

aq' aq'
In order to have explicit forms of vector fields X and ¥
we will discuss both possibilities of a finite-dimensional alge-

bra and an infinite-dimensional algebra that include (4.8) in
commutator products of their elements.

(4.9)

A. Finite-dimensional algebra

We will assume that commutator products [ X %,, X ;]
and [Y?,, Y°,] can be expressed in terms of linear combi-
nations of X, and Y“,. Then the Jacobi identities deter-
mine coefficients of the linear combinations and we find
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[Xab! Xcd] =£(‘Sadxcb —5%X°)
+ (A%/2)(8°Y°, —8°,Y°,),
[Y%, Y5,] = (1/24%)(8%X ¢, — 8°,X°,)
+4(8°% Y —6,Y7),

(4.10)

where A is an arbitrary parameter. Equations (4.8) and
(4.10) indicate that vector fields X %, and Y °, generate fin-
ite-dimensional algebras, which have parameter-dependent
structure constants. It can be shown that representations of
X¢, and Y*°, are given by

1
a . a c 5ﬂ
X4, ——2(B+l){qdqb +4%8%
— (2B + 1)¢°:6% + 6% cb}aa
(4.11)
a &
Y = Z(B—l){qadqb q 6%

— (28— 1)¢°;6°% + 6°,6 b} ch

where 8= (1 +A42%)/(1 —A2). From (4.5), (4.7), (4.9),

and (4.11) we have
dg’, = [172B+ D¢ A g%, +¢° A",
—(2B+ 1)4°.¢°, + A%, }dx
+ 1728 — D H¢" . B g%
—q°.B°, — (28— 1)B°.¢", + B", }dy,
(4.12)

which was obtained before,® and it can be shown that the
Bicklund transformation can be expressed in terms of g%, .

B. Infinite-dimensional algebra

We can show that an infinite-dimensional algebra asso-
ciated with the prolongation structure of the chiral model is
given by
[ (m) (n)

Mab! Mch =6cb

[ (m) ) (m+n+1)

Ne, N, |=6, N

{(M) (n) 7
a c
M b N d

(m+n+1) (m+n+1)
a 4
a—0y M b
(m4+n+1)

=064 N 5, (4.13)

[\
= Z(m+n l)(‘schad —&%M*<y)

2 (m+n—
+ 3 ("

I=0
where m and n run from 0 to + o and () is the binomial

()

I)(&‘,,N“ — 6N,

(m)
coefficients. It can be shown that the vector fields M ¢, and

(m)
N °, are represented in the prolongation space as follows

(see Appendix B):
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(m) % m—1 k_I___l a
Ma =(_2)m+l ( ) a
b k=z~co l=z—w m ql 5qkb
(m)
(—2)m+!
o0 k—m-—1 k__I__l a
X ( )(_l)k—l a_.
k=z——oo I==z—oc m L aqkb
(4.14)
Since X, and Y °, are given by
(0) (0)
X, = —iM°,, Ye, = ——iN",,, (4.15)
we have
oo k-~ a
b—‘kz 12 410'_—52 Z 12 41
Y © k—1 k1 a
4, = (—1)* ¢ —— (4.16)
b k=2_ 2 q 30,°
= i l)k—lq,a ac,
k
and
k—1
F'=(X%), 4% = 2 9,°4%,
== (4.17)

k—1
Gkaz (ch)kaBbc —= Z

= —

With this representation we see that an infinite number of

( _ l)k—lqleab .

pseudopotentials satisfy
k—1 k—1
dg.*=4° 3 qldx+B°% Y (—1)*"'gdy.

1= 1<7 o

(4.18)

Now we will introduce a parameter-dependent potential
¥*(A) by

Fa= 3

A= — o0

(A g, (4.19)
then we obtain a linear auxiliary equation for the chiral mod-
el®

dp=[A/(1 —A)dpdx — [A/(1 +1)1BYdy. (4.20)

V. CONCLUSIONS

In the previous sections we have shown that the prolon-
gation structures of the sine-Gordon equation, the Ernst
equation, and the chiral model give incomplete sets of comu-
tator products of vector fields in the prolongation space. It
was found that there were two ways of constructing the Lie
algebras that include these sets of commutator products. In
the first way we found finite-dimensional algebras that have
bilinear representations of vector fields in the prolongation
spaces. From these representations we obtained the Riccati-
type equations of pseudopotentials for the Bicklund trans-
formations.

In the second way there appeared infinite-dimensional
algebras associated with the nonlinear equations. It was
shown that the linear representations of these algebras gave
the linear auxiliary equations.
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Then we can summarize the above-mentioned results of
the prolongation structure as follows:

nonlinear equation

prolongatlion structure

finite-dimensional infinite-dimensional
algebra algebra
the Riccati equation the Lax pair

the Béicklund transformation inverse scattering problem.

Here we have to notice that the Ernst equation has the new
kind of infinite-dimensional algebra that includes the Kac-
Moody algebra and the Virasoro algebra as its subalgebra,
and that the x-dependent spectral function §(x) comes from
the appearance of the Virasoro algebra.

In this paper we have discussed only nonlinear equa-
tions in two-dimensional space-time. However, I think that
our method of the prolongation structure can be generalized
to be applicable to higher-dimensional nonlinear equa-
tions. "2
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APPENDIX A: THE KAC-MOODY AND THE VIRASORO
ALGEBRA

We will consider a set of vector fields ¥, in a prolonga-
tion space. These vector fields V, are written as

V, =V (g 2 , (A1)
™

and their commutator products are defined by

r V] = (P 3,V 0 VPOV, (AD)
q

where 4, = 3 /3q". With the definition of the commutator
product (A2) the set of vector fields {¥, } can be shown to
be a Lie algebra. The functions ¥V {™ (q) are called compo-
nents of V,.

Now we will discuss a Lie algebra of vector fields in an
infinite-dimensional prolongation space that has coordinate

variables {¢/™; i=12,.,/, m=0+1,42..,+ o}

(m)
These vector fields { 4 ,} are assumed to have the following

forms:
A = 3 gomrm 9 (A3)
i 2 9 m

n= — e i
It can be shown that they satisfy commutator products

(m) (n)

Ay Ay =847 ™ —8,4"+". (A4)
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{(m)
This fact indicates that the set of vector fields {4 ;} consti-

tute an infinite-dimensional graded algebra.
In the following we will consider a duplicated infinite-
dimensional prolongation space {g{™,i=12,m=0,
(m)
4+ 1,.,4+ o} and define a set of vector fields T,

(@=123, m=0,+1,..,+ «) that are linear combina-
(m)
tions of 4 ;:

(;)2= i [qé"*'"’L gi"t™ —‘?—-], (AS5)
. gi” 9g;"
(m) P & d a
T.=— (n+m) — gint+m ]
353 n=z_ . [72 g™ Ul g™
(m)
It can be easily shown that T, satisfies commutator prod-
(m (m+n)
T ir Tj = ieijk T, , (A6)

where €, is a completely antisymmetric structure constant
(m) ( m) (m)

and€,; = 1. Ifwedefinevectors T , = T |, +iT ,, then

they satisfy commutator brackets

(m) (n) (m 4 n) (m) (n)
T, T,|=

r ., |T, T_
Next we will
(m=0, + 1;"-’ + ) by

(m) oo

B>

(m+n)

=2 T 3.

(A7)

(m)

define new  vectors D

a
(n+m) (n+m) —_— (n+m) ]’
[q' =

n= - o agi™
(A8)
then we find that they satisfy
(m) (n) (m+n)
D, T,|l=nT ,,
(m) (n) (m+n) (A9)
[ =(n-m) D

The commutator products (A6) and (A9) show that both
(m)

sets of vectors {T }and {T,, D} constitute the Kac—-

Moody algebra and the coupled Kac-Moody and Virasoro

algebra. In Secs. II and III we have used the representations
(m) (m)
of vectors T ; and D given by (A5) and (A8).

APPENDIX B: ALGEBRA OF CHIRAL MODEL

(m)
In this appendix we will show that vector fields M °,,

(m)
N ¢, given by (4.14) satisfy commutator products (4.13).

From the definitions we have
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(m)  (m
a
Me,, M¢,

= ( _2)m+n+2

% i k—Zim—nk——Iiz—n(:z)(k_lz

k= —w I=—o s=m

c a a Q. C a
X[ o4 30° —64% M]’

)

(m) (n)

Nﬂb’ ch
o k—2—m—n

___(_2)m+n+2 Z 2 (_

k= — o l= —w

)

s=m

X [‘scb%a

m  (m
a
Me, N,

l)k—l

ad 8"‘8
PR

© k—2—m—

— _(__2)m+n+2 2 z

k= — o0

" ( —- l)k—l

I= — o

k—1-2—n {s\N(k—1—2—5
<2 G
a a a, a a
X[yb% 0. — 64 aqk,,},
(m) (m)

which show that traces of M %, and N ¢, commute with all

vectors. Since
—s)_(k-—l—l)
T \m+n+1)’

k=l_2-n s)(k—I—Z
20

the first two commutator products of (B1) become

(B1)

(m) (n) (m+n+1) (m+n+41)

Mab, M 85 m ad _aad M cb I

(m) (n) (m+n41) (m+n+1) (BZ)
a a \a (4

N b ch =5¢b N d —6 d N b

In order to show the last equation of (4.13) we will use
relations

(m+ n (m) [}

(m+1)
b—_—[Z[MaC’ M\ +60,T, M ]’
(B3)

(m+1)

(m) )
[2[1\“;, Ne|+6&,T. N |,

(M+l)

which can be obtained from (B2). Now we will consider the
(m) )

commutator product | M °,, N ¢, |, and show by the math-

ematical induction that this commutator product can be giv-
en by
m (O U o)

Mo, Nc] Z (&M — 8" M*,)

0

©
+(6‘,,N “G—04N<). (B4)

From (B1) it can be shown that for m = 0 (B4) is satisfied.
By using (B3) we have
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(m+1) 0) ] 1 (m) ) ()] ]

M % N =72[ Maes Meb Ny

(0) 0)

(m)
eb’ Nc

-+l

0) (m) (1)}
+[[N o Me|, Mo, ]} (BS)

where we used the Jacobi identity and used the fact that Tr M
commutes with all vectors M and N. Assuming (B4) in (BS)
we can obtain

(m+1) (0) ] m41 (¢ )

b’ N°¢ 2 (5chad _6ad Ncb)
I=0

)

+ (&N — 8 N) . (B6)

Thus we have shown that (B4) is satisfied by an arbitrary m.
Now we will proceed to show the last equation of (4.15)
by the mathematical induction again. From the above dis-
cussions we know that it can be satisfied for » = 0. By using
similar arguments used in proving (B6) we can show

(m) (n+1)

Mab’ N cd

1 (m) (n) (0)
=3 [#n, W W]
r

(n) [() (m)
= 72[ Ve [N 31 ]
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0) (m) (n)
[F [, 5

—_— < m+n+1_l)c a a (l)c
_I;o( nat (6°,M%, — 5°,.M*,)
n4t m+n+1__ O] U]
+ z( 1)(5ch“‘,—5"ch[,). (B7)

(m)

This shows that (4.13) can be satisfied for every M %, and

(n)
c
N d-
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On a new hierarchy of nonlinear evolution equations containing the
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A hierarchy of local nonlinear evolution equations associated with a new spectral problem is
derived. It is shown that each equation is Hamiltonian and that their fluxes commute and a local
infinite set of conserved densities is given. An interesting reduction is considered. In this case a
hierarchy of local nonlinear evolution equations is generated by a recursion operator and its
explicit inverse. Also this hierarchy satisfies a canonical geometrical scheme. It contains as a

“special case the Pohlmeyer-Lund-Regge equation.

I. INTRODUCTION

Among the nonlinear evolution equations (NLEE’s)
solved by the method of the inverse spectral transform
(IST),' there are two relativistic covariant equations, which
seem to have a great interest in many physical problems: the
well-known sine-Gordon (SG) equation® and the Pohl-
meyer-Lund-Regge (PLR) equation.>**

The PLR equation, which is a generalization of the SG
equation and shows soliton soutions,*” arises in a relativistic
theory of vortex motion in a superfluid (like He II)* and in
the related theory of dual strings interacting through a scalar
field.® It seems also to be very interesting in general relativi-
ty” and it appears in the one-space-dimensional version of
the O(4) nonlinear o model.>®

In general, the NLEE’s appear as members of an infinite
hierarchy of partial differential equations generated by an
integrodifferential operator, the so-called recursion opera-
tor, which is associated with an eigenvalue problem.

In this paper we have succeeded in finding the hierarchy
containing the PLR equation in the laboratory coordinates.

Following the AKNS method,” we introduce the princi-
pal spectral problem

¥ =U0¥ U=U(xzti), (LD)
and the auxiliary spectral problem
Y, =W, V=V(xti). (1.2)

The compatibility condition ¥,, = ¥, gives the so-

called Lax representation
U-vV.+[u¥yvi=0 (1.3)

for the NLEE's that we are interested in. In general Uand V'
are matrix operators, and ¥ is a fundamental matrix solution
of the spectral problems. One can obtain a hierarchy of equa-
tions related to the potential operator U, choosing different
Vs,

22 On leave of absence from Dipartimento di Fisica dell’ Universita, 73100
Lecce, Italy.

® Unit associated with C.N.R.S. N° 040768, cooperative research under
Programme N° 080264.

2661 J. Math. Phys. 27 (12}, December 1986

0022-2488/86/122861-07$02.50

Boiti and Tu'® proposed an interesting new spectral
problem

U=ido; 4+ u(x,t)a, + (i/A){s(x,t)o; + iv(x,t)o;), (1.4)

where the g,’s are the 2 X 2 Pauli matrices and u (x,2), s(x,?),
and v(x,t) are the three independent scalar potentials, which
are supposed to go to zero as |x| — ¢ . The auxiliary spectral
operator ¥ was chosen to be a polynomial of positive powers
of A. They found an associated new hierarchy of NLEE’s and
showed the canonical structure of this scheme.

The most interesting special case of this spectral prob-
lem is obtained by taking the reduction (Boiti-Leon-Pem-
pinelli)"

S —?=8, Sp =56 =0, (1.5)
with the following asymptotic behaviors:

u{x,t)—0,

v(x,t)—0, as|x|—c0. (1.6)

5(x,t)—>Sg,

Also in this case there is an associated hierarchy of
NLEE's; moreover the condition (1.5) allows us to find a
hierarchy also for ¥ chosen to be a polynomial of negative
powers of A. The recurrence operator in this case is the in-
verse of the recurrence operator of the hierarchy obtained by
choosing a polynomial of positive powers of 4. The canonical
structure of this scheme is proved by using the method re-
cently proposed by Boiti-Pempinelli-Tu (BPT).'? There-
fore this spectral problem shows the new interesting proper-
ty that both the recurrence operator and its associated ex-
plicit inverse generate two hierarchies of NLEE’s, which are
both local, in spite of the nonlocal character of these opera-
tors.

The most interesting NLEE associated to this spectral
problem comes out to be the sine~Gordon equation in the
laboratory coordinates.

In the paper'® already quoted, Boiti and Tu proposed
also a more general spectral problem

U, tA) = — iAoy + P(x,t) + (i/A)Q(x,t), (L.7)

where P(x,t) is an off-diagonal 2X 2 matrix and Q(x,?) is a
free 2 X2 matrix.
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The aim of this paper is to study this spectral problem
and a reduced case that furnishes a hierarchy containing the
PLR equation in the laboratory coordinates. In both nonre-
duced and reduced cases the canonical structure is explicitly
found using the BPT method and infinitely many conserva-
tion laws are derived.

The reduced case shows the nice property that the recur-
rence operator and its explicit inverse generate two hierar-
chies of NLEE’s, which are both purely differential.

Let us finally note that the PLR equation in the light-
cone coordinates has been related to the Zakharov-Shabat—
AKNS spectral problem.'* However, the NLEE’s in the
hierarchy that can be obtained in this case couple two inde-
pendent fields and cannot be related to the NLEE’s obtained
in this paper that couple four independent fields.

Il. THE GENERAL CASE
Let us consider the spectral problem'®

Ux,tA) = —idos + P(x,t) +id ~'Q(x0),  (2.1)
where

P=(: 71) Q=(Zs q4) (2.2)

» O s ds

with the asymptotic behaviors

q:(x,t) l - 0, i=1,..,6 (2.3)

As usual, we can choose

(2.4)

v="S ¥,xni"
=0

One can see immediately that both Q and ¥ must be
traceless and we put

0 g a3 94
P=(42 0)’ Q=(45 —43). (2:3)
U takes the form
U= (—id +id ~'g)o5 + (g, +id "'g)o,

+ (g, + 14 ~'g5)o_. (2.6)
We can decompose V; (x,?) as
V,(x,t) =4(d;o; +¢0, +fio_). 27

Inserting the expressions (2.6), (2.4), and (2.7) in the
Lax representation (1.3), with a convenient choice of thei

— (i/2)D + igylq, — iglg, (i/2)gs
iq,lq, (i/2)D —iqlq, (i/2)q,
L= 2ilgq, — 2ilg, 0
i 0 0
0 i 0
and
0 -2 0 0 0
2 0 0 0 0
J=1 0 0 0 iq, —igs |,
0 0 —ig, 0 2ig,
0 0 iqs — 2ig, 0
2862 J. Math. Phys., Vol. 27, No. 12, December 1986

integration constants, we obtain the recurrence relations
(introducing for conveniencee, ., andf, ;)

eo=f6=0, do= — 2, e1=2q1, fl=2q2,
iej = —d¢, —i(qd;_ | —q:¢;_) —qid;,

fiv1 =3 +i(gsfi_1 —asd;,_ 1) —q.d;, (28)
d;=1[(q,f; —9:¢) +i(qsf;_1 —4qs¢,_1)],
j=1,..,n,
where I is the operator defined by
17" w
IE-?(J-—-” —L )dx, (2.9)
and the evolution equations
G = —le, .,
9 = i n+1
93 = 4(gse, — q4/), (2.10)

9o =449, — G,

95 =43/, — qsd,.

These can be written in a more convenient form by in-
troducing the vectors

9
q:
q9=1 95 ] (2.11)
94
qs
UP)
9
A =] 2 |, (2.12)
0
0
and
— le;
ijl'.
@ =] i(gs¢;_, —qfi-1) |, j=Llean+],
qud;_ | — 4381
%ﬁ_l - quj—-I
(2.13)
together with the matrix operators
— igs + ig2lq, — iq,1qs
iq\1q, — ig; — ig,lqs
2ilq, — 2ilq, (2.14)
0 0
0 0
(2.15)
F. Pempinelii and S. Potenza 2862



where D =3 /dx.

The recursion relations (2.8) have become
@, =L, j=1,..n (2.16)
[t means adjoint with respect to the bilinear form (2.18)]
and the evolution equations have become

q,=JL"f(q), n=0,1.2,... (2.17)

We briefly remember'?'* that ¢(x,t) can be regarded as
a point in the configuration space .4 of vector-valued func-
tions of the real variable x. Associated with each point g of
# there is a tangent space T, and a cotangent space 7'} dual
to 7, with respect to the symmetric bilinear form

(ﬂ9a) =

+ o

B;(x)a; (x)dx, (2.18)
w 7

where aeT, and BeT}. We suppose a(x), B(x)—0 as
|x|—co sufficiently rapidly for the convergence of any inte-
gral that may be required.

With respect to this bilinear form (2.18), the operator J
is cosymplectic, i.e., it is antisymmetric

BJa) = — (JBa)

and satisfies the Jacobi identity

(aJ'[JBly) + BJ'[Jyla) + (vJ'[Ja]B) =0, (2.20)

where J'[ ] is the Giteaux (or directional) derivative of J,
defined by
4

J'lpl =
[p] de €e=0

The fact that J is cosymplectic enables us to introduce a
Poisson bracket for any pair of functionals F and G

6F  8G
{(F,G} = (— J —)
8¢ OS¢
(6/8q is the variational derivative), which is skew symmet-
ric and satisfies the Jacobi identity.
Moreover J and L satisfy the first coupling condition
JL=L". (2.23)

It can be shown that L ' is both a hereditary and a strong
symmetry for all the equations in the hierarchy (2.17).1%

(2.19)

J(q + €p) (2.21)

(2.22)

HI. THE HAMILTONIAN STRUCTURE

We show now that each equation of the hierarchy
(2.17) has an infinite set of polynomial conserved quantities.
Let us introduce the projective variable

Z =Y/, 3.1

where ¥, and ¢, are the elements of the eigenvector ¥ = (};!)
of the spectral equation (1.1). Here Z satisfies the Riccati
equation

Z, = (g, +id 7'q5) + 20A — il "'q;)Z

— (g, + A4 T'q)Z*=C—24Z — BZ>. (3.2)
One can easily see that the quantity
X =A+BZ (3.3)
satisfies the relation
#,=(A4+BZ), (3.4)
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and consequently is a conserved density with flux 4 4+ BZ.
Expanding Z formally as

zZ=73 Z.4°%
we get the recurrence relations
Zo = 0,

Z, = (i/2)q,

3.5)

Zy, =iqdyy + 22, —2g:2Z) _, —q, (3.6)

k k—1
X z Zk—ij —ig, Z Zk—j—l Zj
j=0 j=0
(k=1,2,..).
They furnish the coefficients in the expansion

H= it 3 HA 3.7
k=0

and therefore an infinite set of local conserved densities

K, =igd, + . Z, +igZ,,_,, k=0,12,., (3.8)
where for convenience we have put Z_, = 0.

We write the first few explicitly

Ho=0,

X\ =1i(g: + :192/2), (3.9)

K2 =192 — 30195 — 34492

The conserved quantities associated with /#° and 77,
are
+ o

+
H=J (%(x)-—ﬁ’(oo))dx=f P (x) + il )dx
T o (3.10)
and
+ oo
Hk = %k(x)dx, (3-11)
respectively, where
H=3 Hai* (3.12)
k=0

Let us now follow the BPT method!? and examine the
functional derivative of these quantities.
If we define a matrix X such that

6H

K, = 78—[11_, s (3.13)
we find that X satisfies

K.=[UKX] (3.14)
and

Tr{K} =1 (3.15)

Let us consider the usual Weyl-Cartan basis R

{R,=1,R,=0y,R,=0,,R,=0_}. (3.16)
The operator U takes the form

U=§05+6:0.+80_, (3.17)

where the components &, (a = 2,3,4) are furnished directly
by (2.6).
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We can decompose K with respect to the dual basis .S

{5:=11,8,=103,8;=0,,8,=0_}, (3.18)
K=iK1+K,0,+ K0, +K,0o_. (3.19)
Condition (3.15) furnishes us
1=Tr{K} =K, (3.20)
and Eq. (3.14) gives us

K, =0,
K, =2(K;5; — K.,

2x ( 3;3 4;4) (3.21)

K, = Kz§4 e 2K3§21
K4x = 2K4§2 - Kﬁs-

These differential equations can be used to write the
BPT isospectral eigenvalue equation'?

L _ L Ly,
oq oq

where y(q) is a conserved covariant for all the equations of
the hierarchy and u(4) and v(A4) are functions of the spec-
tral parameter A to be determined.

In this case §H /8¢ becomes

K,
K,
iA 7K,
il K,
il 'K,

Applying L to this quantity and using (3.20), (3.21),
and the asymptotic behavior of 6H /éq,

(3.22)

SH _ (3.23)

0
6H 0
— sl as |x|— o0, (3.24)
bq 0
0
we obtain the explicit form of the isospectral equation (3.22)
oH 6H 1
L—/—=1"4+ = , 3.25
> 5g 2 [ (3.25)

where f(q) is given by (2.12).

Inserting the asymptotic expansion (3.12) in (3.25)
and equating to zero the coefficients of the successive powers
of A ~!, we get the following recursion relations:

SH,

5 - 1/2i Aq),
q
: (3.26)
8H, _ 8H, k=12
5q 5q '
which can be rewritten as
6H,
j——t1  k=0,12,... (3.27)

L*(q) = — 2i ——**L |
q) i 5

Equations (3.27) prove the Hamiltonian character of
the NLEE’s (2.17). Therefore the general IST-solvable

2864 J. Math. Phys., Vol. 27, No. 12, December 1986

NLEE related to the spectral operator U (2.6) can be writ-
ten as

=3 1, OIL g)
=0

=-2Y ,uj(t)J%}—, (3.28)
/<o 5q
where the coefficients u; (¢) are arbitrary functions of .

Let us note that from (3.25) we can easily prove, follow-
ing the BPT method,'? that the fluxes commute and the
NLEE’s (3.28) can be identified with the group of motion of
a special geometrical structure called a symplectic Kihler
manifold.™

Let us finally write explicitly the first equation in the
hierarchy (3.28) (n=1)

91 = q1x + 294

9 = Gax — 245,

93 = 4195 — 9244 (3.29)
9 = — 24591,

gs: = 2934,

We can still note that all the results of Boiti and Tu'® are
recovered in the limit

q1q,—U, Gy—S, GV, (gs—>— V. (3.30)

IV. THE REDUCED CASE

We can now go on to examine an interesting reduced
case. The first problem is the existence of a compatible re-
duction condition of the same kind as (1.5)."!

We introduce an expansion for the traceless operator V'
in both negative and positive powers of A:

P

V= 2 Vj,{"“f+ 2 Wjﬂ“’“‘. 4.1)
i=o0 ji=o0
We can make two alternative choices of V-
W, (x,t) = i(a,05 + bjo, +c0_), (4.22)
Vj (x,t)=0
or
W, =0, w2

I/j(x,t) = i(djo’S + ej0+ +fj“a-.)-

One can see immediately that, for the second choice
(4.2b), Egs. (2.10) satisfy the condition

(g3 +4495). =0. (4.3)
So we can consider the reduction
Q§ +q49s= 7’2’ Y=Y = 0, (4.4)

with the following asymptotic behaviors for the fields:

91929495 0
93 -y

In the limit (3.30) we recover the condition (1.5).

When (4.4) is imposed, the recurrence relations (2.16)

as |x| - oo, 4.5)
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take the form (with a convenient choice of the constants of
integration)

$j+ 1 = 2 *61, j = l,-..,n,»

(4.6)
e0=f;)=0’ d0= —Zi,
where 6, is the vector
1
— 4D + ig,lq, —igylq, — g+ igylq,
f= ig,lq, (i/2)D — ig,Iq, ig\Ig,
i— (igs/q3)1q, i(9s/95)1g, —i(qs/q3)1q,
—i(qy/q:)q, i+ (igy/q3)lq,  — (iq/q3)1q,
Let us introduce a new vector §
q1
o 92
q = . (4.9)
44
qs

The evolution equations now take the standard form in
the case (4.2b)

— ig
A i
= , J=lL.,n+1, (47)
! q4d; 1 —q3¢;_, J
qu}—l - qsdj-—l
and L 1 is the adjoint of the recurrence operator L
— ig,1qs
— igy — ig,lIq;

, (4.8)
(igs/q5)1qs
(iga/q3)1qs

{ions in the hierarchy (4.10), and the first coupling condi-

tion
=L

is satisfied.
Let us now consider the first choice (4.2a). If we put

expansion (4.1) with the coefficients given by (4.2a) in the

Lax representation and we equate to zero the coefficients of
the powers of A, we can see by inspection that the recurrence

(4.13)

4, = JL rg(g), n=0,1,.., (4.10) relations can be solved only in the case when the reduction
where condition (4.4) holds and ¥0. In this case we have (witha
convenient choice of the constants of integration and intro-
% ducing for convenience a,,,, b,,,, ¢,,,, and
@w= 7 @iy D=
g q B "‘45/43 ’ ' ‘ij:MTa)j—l’ j=0,lr~'9p9 (4 14)
— 44/ ag= —2iq;, b= —2iq, c,= —2igs,
where 5, is the vector
0 -2 0 0
~ ; ib
o o 0 (4.12) !
0 0 0 2ig & G (4.15)
0 0 —2g, O 7 gsb; 1 — 9494 '
A ~ . — @C;
Also in this case J is a cosymplectic operator, L isboth a 541 = 4541
hereditary symmetry and a strong symmetry for all the equa- and M ' is the adjoint of the recurrence operator
|
2slq, — 2g;lg; — gsw,q; — 27 qsWA4s
M= — i 24.1q, — 249,145 — 44093 qayg; — 27 4.16
22| 2v/a; — wiq, wigs yw}Dw,q; + (¥*/4;)D — jw] Dw.g, ’ (4.16)
—wlg, 27%/q; + wigs Jw! Dw,g, ~ yw} Dw,g; — (¥*/q,)D |
I
with Furthermore M ' is both a hereditary and a strong sym-
W= — q,/q; + 1(q.:/q5 + 2q,) (4.17)  metry for all the equations in the hierarchy (4.20) and the
and first coupling condition
w,=4s/g; + 10 — 4s:/q5 + 245)- (4.18) M=mMT (4.21)
The evolution equations look like is satisfied.
g, = a',p (4.19) One can check directly that
and they can be put in the standard form LM =ML =1, (4.22)
g, = Y?M” g(§), p=0,12,., (4.20)  and consequently (4.20) can be rewritten as
whereJ and g(§) are given by (4.12) and (4.11), respective- 4 =7JL """ 8(@), p=01,... (4.23)

ly.
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Therefore the general IST-solvable NLEE related to the
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spectral operator U (2.6) with the reduction (4.4) (¥5£0)
can be written as

n

2 (+ )(I)JL Jg(q)

+ 3w 0IL - 9@, (4.24)
=0 ‘

where the coefficients u1{ * () are arbitrary functions of ¢.

V. THE HAMILTONIAN STRUCTURE IN THE REDUCED
CASE

Let us consider again the Riccati equation (3.2) and
both the asymptotic expansion of Z as A - «0 and as 4 -0:

ZW = 2 FAS R (5.1)
and
= 3 Ziak (5.2)
k=0

Inserting (5.1) in (3.2) we reobtain the recurrence rela-
tions (3.6)

Z(()+)=
Z{*Y) = (i/2)qy

: (5.3)
Z;c;)=iq56k| +2iZ](¢j_)1 —'2iqu}ci} —q,
k k—1
XS ZLZIT —igy S Zit)_ 2L
/=0 j=0
(k=1.2,.),

and inserting (5.2) in (3.2) we now obtain

Zé_) =¢s/(q:+ 7),
D= (/29 Z5 + 257 — qu),

(5.4)
k
Z{=26Z(") - 2gZ{7) —q, Y ZLT)ZS )
j=0
. .
— g, Z Z§c:j)+lzlg—)
j=0
(k=1.2,.).
We can introduce
FH= i+ 3 HAH (5.5)
k=0
and
F =il "y + Z KAk (5.6)

Using (3.3) and the recurrence relations (5.3) and
(5.4) we get two infinite sets of conserved densities:

% = ig16; +qlz(+)+lq4z(..|, k=12,..,
(5.7)

and
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%(_)——qlz( )+’q4zk+1 iakl, k=0,1,2,...

(5.8)
The conserved quantities associated with #**, %),
HL), and H#,~ are

+ o
H‘i’=f X (x) = H () (59)

and
+
H{ =f dx( L (x) — F5E (), (5.10)
respectively, where

H(+) z H(+)/1—k (5.11)

and

= D H{Ak (5.12)
Let us stress that we still have not used the reduction
condition (4.4) and consequently the two sets {#°; * ’} fur-
nish the conserved densities for NLEE’s related to the spec-
tral operator U (2.6) in reduced and nonreduced cases.

In order to relate the conserved quantities H { +° to the
Hamiltonians of NLEE’s (4.24) we need to prove that both
8H /8¢ and 8H ‘~'/8§ satisfy a BPT equation (3.22). One
can follow the same method used in Ref. 11 for the reduced
case. Precisely we prove, in the nonreduced case, that 6H =/
8q = 6H +'/8q and, because the equality keeps its validity in
the reduced case, we write the eigenvalue equation (3.25)
for the reduced operator L as

iaﬂ(i)_aﬂ(t) 1

TR +Zg(¢7), (5.13)
where
S
/ oq, \
5
6 éq,
o 5 g b , (5.14)
544 24, 543
S _4 9 /
\545 2q, 6q,

which is satisfied by both 8H (/8§ and 6H ~'/83.
Inserting the asymptotic expansions (5.5) and (5.6) in

(5.13) and equating to zero the coefficients of the successive

powers of A ~! and A, we get the recursion relations

SH{P’ 1

511,21{ =Z ‘mfiﬂ , k=12,
64 64
and
SH(_) 1 ~ N
=5 L '@,
(q—) l (=) (5.16)
6”’1*‘ =L 5H’: , k=0,12,...
6q
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Equations (5.15) and (5.16) can be rewritten as

(+)
L*(@) = fh‘—, k=0,12,.., (5.17)
oq
and
A ‘SH(——)
L ~*¢(d) =2i%‘-, k=12,. (5.18)
g

In this way we have proved the Hamiltonian character
of the NLEE’s (4.24).

Therefore the general IST-solvable NLEE related to the
spectral operator U (2.6) with the condition (4.4) and y#0
can be written as

n

z (+)(t)JL Jg(q)

A

Z “’(t)JL —I=1g(§)

n A(SH-(+)
= -2 (1) —LE-
j;o'uj 8¢

(s 8 H ()
+2 z s (t)J—aq .

Also in thls case one can easily prove from (5.13) that

the fluxes commute and the NLEE’s (5.19) can be identified
with the group of motion of a symplectic Kahler manifold.
Let us once more stress that, for this spectral problem
with the reduction condition (4.4), together with the sub-
case considered by Boiti-Leon—Pempinelli'' (and only in

these two cases at our knowledge) we have the nice property
that the recurrence operator L hasan explicit inverse L-
which is also a recurrence operator, and both the hlerarchles

A
of NLEE’s associated with L and L — ! are purely local.

(5.19)

VI. THE POHLMEYER-LUND-REGGE EQUATION

Let us now write explicitly one interesting equation of
the hierarchy (5.19). We choose n =1, p=0, and p§*’
=0,u{*’=1,and u§~’ = y and we get

9 =G + 4 92 =G — s,

9 = —Qax — 49591 95 = — qsx + 40302

Now we can introduce the two new functions @ (x,?)
and y(x,t) in the following way:

6.1

q; =Y Cos w,
g, = ye* sin o, (6.2)
=ye~ ¥sinw,
which satisfy the reduction condition (4.4)
G +495=7> ¥x=7.=0, y#0.
The first two equations (6.1) give
— g1, = 4ye* sin w,
9 — G 4 (6.3)

G2 — Gy = —4ye” ¥sinw,

and the two last equations (6.1) take the form, after some
algebraic manipulations,

@, — O, + 16y sin © — tan o (y?

_ngg)=09
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1t = Xxx +Zc°tw(tht — @y Xx)
+tanw(y, + ¥, ) (@, —@,) =0 (6.4)

In the limit y — const, we reobtain, as expected, the sine—
Gordon equation in the laboratory coordinates.

Equations (6.4) can be easily transformed into the
Pohlmeyer-Lund-Regge equation. In fact, if we introduce
the new fields 8 and 4 as

w=20 + 7,

Xx = A, — tan®(w/2)4,, (6.5)
x: =4, —tan*(w/2)A,,
we get immediately
6,. —0, + 16ysin fcos
+ (A2 =A%) (cos O /sin 0) = (6.:6)
(cot? 04,), = (cot? 64,),,

which is just the equation given by Lund and Regge in their
paper.*

Therefore we have succeeded in getting the PLR equa-
tion in the laboratory coordinates as a member of a hierarchy
of purely local NLEE’s that satisfy a canonical geometrical
scheme.

The study of the Bicklund transformations of this hier-
archy and the case y = 0 is deferred to a forthcoming paper.
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Some remarks on the nonlinear integral equation in Kirkpatrick’s theory of
glass transition

Tetz Yoshimura
Paris, France®
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The nonlinear singular integral equation for “self-energy” 2 (k,z) arising in Kirkpatrick’s
mode-coupling theory of glass transition is analyzed without suppressing the k¥ dependence. An
equation that is equivalent to Kirkpatrick’s equation and suitable for high density is set up.
Applicability of Lika’s generalization of the Newton-Kantorovich successive approximation is
discussed. The possibility of solutions that cannot be found by iteration is pointed out.

I. INTRODUCTION 3(k2) = P ({(®(k2)) ' =z}~ —y(k).  (3)
Recently, Kirkpatrick' proposed a mode-coupling the- In this paper, we investigate the mathematical struc-

ory of glass transition. The correlation function ®(k.2) i8  tyres of singular nonlinear integral equations arising in the
defined as . Kirkpatrick model without simplifications. Earlier works by
®(kz) = f dte—*{ns(k)Q(k)} " Leutheusser?and Bergtzelius etal? alsosuppressed k depen-
o dence. We apply nonlinear operator theory to these integral

) i) equations, regarding ® and 2 as complex-valued functions
X e J e ! s ( 1 ) . . .
(E ; ) of real variables, not as complex analytic functions.
J
and the relation between ®(k,z) and the “self-energy”
2(k,z) is
(k) = [z4 ROk + 2k}~ (2) Il. INTEGRAL EQUATIONS AND THEIR SOLVABILITY
or equivalently | The equation for the “self-energy” X (k,z) is
+ico dz ) 1
2(k2) =f —‘f dqf du V(g.ku)
c—iw 2mi Jo -1

X [z, + Q%((¢* + kgu + 1k )" HN(G* + kgu + 1k 2)V?) + 3((¢* + kgu + 1k 2)V22)} 1] !

X [z — 2, + (% — kgu + 3k ) *HAN(FP — kgu + 1, *)'?) + 2((¢* — kg + kD) 2z — )} 1171, (4)
where
Q*(k) =k BmS(k))~", B= (kgD ',
Vighp) = ﬂ%ﬁ——%— (%k + q,u)C(q+) + (—;—k _ q,u)C(q_) + nke™(g ) ]2,
g, = (¢ tkau+3kD)Y? k) =nB""m~"*f (k)g(n), (5)
fk)=0(k®), 1<8<2, fork—0, f(k)=0O(k¢), €<0, fork— w0,
0<g(0) <o, O0<g(w)<w, s(g)=1+nh(q).

Here h(q), c(q), and ¢®(g,ku) are Fourier transforms of the total correlation function, direct two-particle correlation
function, and direct three-particle correlation functions, respectively. (For definitions of these functions, see, e.g., Cole* and
Resibois and DeLeener.®) As the structure of Eq. (4) is different from those of the equations in quantum field theory, etc., it is
a challenging problem to deal with this equation. First, let us consider the case of small n. The equation of X can be rewritten as
follows, showing parameters n and 8 more explicitly:

2(kz) = &(Zk,2)
ieo + € o0 1 -
=2 ﬁf dg| dpV(gkp){z, +B8 '0*(q.)(3(g..2) +nB " *p(g,)) "'}
B J_iowte2mido -1
X{z—z,+B'0*(q_)E(g_z—2) +nB~?p(q_))" "}, (6)
where

* Unemployed. Postal contact address: c/o Professor A. Vantura, FB Phy-
sik, Universitiit Kaiserslautern, D6750 Kaiserslautern, West Germany.
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Vigkp) =n="BV(gkp), ok)=BY2Qk), 7k)=n"'8"?y(k), €))

and 7 plays the role of a sort of coupling constant.
The denominator

{z, + B '0* (9. )(2(g.21) + 1B~ *7(q.))'}
vanishes forz, = 0,u = + 1,¢ = + }k. For k #0, one can take the principal value. For k = 0, this denominator vanishes at
the end point ¢ =0, but the integral converges because the kernel ¥ contains the factor ¢°. The situation is similar for
{z—z, 4}

So, we replace f2*/2 by §'=,, and regard 2(4,2) as a complex-values function of real variables k and § = i~ 'zand putin

a Banach space. It can be easily seen that

- —-1/2 ‘ -1
S(0k) =4 f dg f dp V(q,km{z + gty + mz(q-)(?(q..))"]] (8)
converges if
C(q) =o(q—-3/2—e/2)’ c‘s’(q,k,,u) =0(q‘ l/2—e/2)’ fOl'q—> 0. : (9)

It is an interesting fact that the conditions (9) are not satisfied for hard spheres. Because of the poles of the integrand, the
mapping & is not Fréchet differentiable, so that conventional Newton-Kantorovich-type successive approximations are not
applicable. But do not worry. We have the following theorems due to Lika.5

Theorem 1: Suppose the following conditions are satisfied: (1) the Fréchet derivative Q ' of the Lipschitz approximation Q
to P satisfies the condition

19 (x1) — @ ()| <Kllx, — X5l  Voxy,x.€ M;

Q) [|P(x;) — Q(x;) — P(x3) + Q(x)|I<A ||x;y — x5,  Vxy,x€ M;

(3) Ho= [T — Q' (xo)] " exists and ||Ho|| < By, || Hofxo — P(x0))l| <0

(4)BA<;

(5) ho = Boox<}(1 — Boh)?;

(6) the closed ball S(xo,r,) CM, where ry = [1 — BA — {(1 — BA)? — 2k} /2100 5"
Then the equation x — P(x) = 0 has a solution x*&S(x,,7;), to which the sequence defined by

Xpyr =%, — [I—Q'(x,)] 'x, — P(x,))
converges, and the error estimate is

Ix* —x,lI<[1—B,A—{(1 —B,A)*—2h,}'*](B,x)"".
Theorem 2: Suppose the conditions (1)—(4) of Theorem 1 are satisfied, as well as the condition (5') there exists a number
Ne((1 — BA)~1, 2(1 — B,A) ") such that

2{(1 — BA)N — 13N 2> h,. .
Then, the sequence defined by

o1 =%, — = Q'(x)] ™' (x, — P(x,))
converges to the unique solution x* in .S (x,,N&,) of the equation x — P(x) = 0 and the error estimate reads

llx* — x, ||< (Nho — BAo)eo(1 — Nho — Bod) ™.

If N>2(1 — BoA) ! but hy<}(1 — ByA)?, a solution exists but uniqueness is not guaranteed.
As for a Lipschitz approximation to &, one can take

T(Z5k,2)

LN 7Y
B J-ix2m,
X6,({(g+3ku)* + (lu] — 10’7 + 1A |3} — )+ {z: + @* ()18 ~*7(g,) + 20, (g42)) '}
X{1—6,({(g+¥)* + (u| — 1’7 + |73} -] [{z— 2.+ 0*(q_) BB~ (g ) + Z(g_z—~2) '}
x0,({(g— k) + (lu| = D7 + [z =23} 2 —v)+ {z -2, + 0* (g ) (B~ ?*P(q)

+ 20 (g_z—2z)) 31 - 0,({(g — ¥kp)?* + (| = D7 + |(z—z))|3 12 — )} ] (10)

oo 1 -
f dqf dp Vigkp) [{z, + @*(g.) (1B ="*7(q.) + 2(g4.2)) "'}
0 -1

0, b’f>p’

G@=[_ now 00={ M0 e an
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and choose parameters v,p,7,, and 7, and =, so as to satisfy the conditions of Theorem 1 or 2.
This technique can be applied also when it happens that

Re 2(ki§) +nB ~'?p(k) =0, «*(k)[Im (ki) {(Re Z(k,il) 4+ nB ~V?5 (k) + (Im S(k,if))?} '] =B, (12)

for some combinations of &, {eR after certain steps of successive approximation.
Alternatively, one can write an integral equation for £(k,2) = 2®(k,z):
foo

E(kz) =z{z + nw?(k) [ﬂ”zf’(k) + ﬁfm dg
— i 27 Jo

1 - w1
XJ du V(q,k,#)E(qHzl)E(q_,zmzl)zr‘(z~—zl)"] ] = :£(Ek.2). (13)
e ]

(9 is not normable. )
Obviously = = 1ifn = 0. So, one might think that one could begin with the zeroth approximation £, = 1, but it does not

work unless
c(q) =0(g7%"?), ®(gku)=0(g"%?), forg—w, (14)

because the integral f&dg V(g,k,u) diverges otherwise. Moreover £ = 1 gives 2 = . Therefore, =, and consequently P,
cannot be expanded in powers of #, unless condition (14) is satisfied.
Now we define the norm of = by

IEll=¢; sup |E(kil)|+c, sup |k*E(kil)|, c,ceR™. (15)
keR*, §eR keR™, 5eR

Then the map X is Fréchet differentiable and one can begin with the zeroth approximation

Eg(kz) =2z{z +nB 20 (k) (F(k)) "'}
However, the situation (12) cannot be dealt with by Eq. (13), because the norm of corresponding E is not bounded. On the
other hand, by virtue of the Fréchet differentiability, bifurcation theory is applicable. In order to find bifurcation, one has, at
first, to solve Eq. (13) and find a solution £(k,z',n3) as a function of k,z,n, and 8. Then a necessary condition for bifurcation
becomes a nonlinear (with respect to # and §) eigenvalue problem

i oo o 1 _ . —2
EV(kz) =Zznw2(k){t3”25’(k) +f dz‘f dqf du V(q,k,p)E(qwz,;B)E(qw,z-—zl;n,ﬂ)zr’(z—z.)“]
—ia (] —1

-2

i oo o 1 - —1
X [z + nwz(k)[ f dz, f dqf du V(g,k,n)E(q.,z;nB)E(g_.z —z;nP)z,(z — 21)_1} ]
— oo o -1

i oo 1 .
XJ dz, du V(g.ku)E(g, z;nBzy 'z —2) " 'EV(g_.z —z;). (16)
— i —1
If Eq. (16) admits a nonzero solution for some combination of values of n and 8, say (n_, 5. ), there may be a bifurcation.
However, in order to know whether a bifurcation actually occurs, one has to investigate the equation

EE(,nB)kz) — E(E(,5nB) + E* (0, )ikz) = E4 (k.2), (17
for values of 7 and B near (n_, B, ). It should be noticed that bifurcation and the glass transition are different. However,
neither Eq. (4) nor Eq. (13) is suitable for a search for critical values of # and 8, because the norms of 2 and E are not

bounded at a critical point.
Let us assume asymptotic behaviors of y(k),

y(k-0)=0(k?%), 1<6<2, y(k—o)=0(k ~¢), €30,
and define a new unknown function A by

Akz) =k°(k*+A)~*y(k) + Z(k2))"', AeR*, € =Max(S,). (18)
Then the equation for A is
k5 [ . i oo dZ o« 1
Atkz) = ~25(k -*fzf —-l-fd 4
(k,2) n3ﬂl/2(k2+/{)e'/2 n 7/( )+ﬂ i 21 Jo 9 -1 H
XV 4 (gku){z, + B " '0* (g, )A(g4.2) (¢4 +A)"? g%} !
-1
X{z—z, + B '0*(g_)A(g_z — 2,) (¢~ +ﬂ)"’2q:5}“‘] =8 (Ask,2), (19)
where
VA(gkp)=n"B""2V(gku). (20)
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This equation has the trivial solution A = 0 corresponding t0 £ = « and E = 1, unless condition (14) is satisfied.
But this does not imply the absence of a nontrivial solution, because for the trivial solution, £, of Theorem 2 is 0, so that
S(0,N&,) = {0}. Though & is not Fréchet differentiable, one can take the Lipschitz approximation

o] L LCR T IN= N) RER
X [{z+B 702 (g )AL 2) (@ +2745°'6,({(q + ) + (| — DA + A B2 — )
+{z, + 87 '0*(g. ) Ao, (g42) (% +A) g%}
X{1—6,({(q+hu)* + (ju| = 1)*r} + |73} —)}]
X[{z—2 +B7'0*(g_)A(g_z —2,) (¢~ +A)"*q=°} !
X6,({(g — Ye)* + (lp| — D*r + [z — 20’3} —v)
+{z—2z,+B7'0%(q-) Aoy (g_z—2) (¢ +A)*¢~°%}

-1
X{1 - 6,({(g— Yeu)* + (| = D°7} + |z~ 2|3} - v)}]] , (1)
with a suitable A ,, and apply Theorem 1 and 2 with a zeroth approximation
A“”(k,z) =n-—1ﬂ——1/2k6(k2 +/1) —#/Zi',(k).

In order to find the critical values of 7 and 3, one has to investigate A (%, 0) as a function of », 8, and k.
If Egs. (6) and (19) admit a solution, then

lim 2(kz) = —y(k) = — nB_”z?(k), lim 2(kz2) = o, ,lgin(l, S(k,z) = 0, ﬁlim 2(kz) =0, (22)
n-0 n—eo - ~ o0
should hold.

It should be noticed that the unsimplified equation (6) cannot have a solution of the form
3(kz) =2z7'2,(k) — 2,(k,z), 2,(k)5=0. Should such a solution exist, =, would have to satisfy the equation

_n(" ' T’(q’k#)zl(4+)zl(q—) =
R BL “) P @ + BNt + ) @
Obviously this equation has trivial solution =, =0. Because the Fréchet derivative of & ,, (2;k,z) at =, = 0 is identically
zero, a nontrivial solution cannot exist. On the other hand, bifurcation theory is not applicable to Egs. (6) and (19), because
the mappings ® and X are not Fréchet differentiable. However, if ¢(¢) and ¢®(g,k,u2) behave asymptotically for g — oo,

c(@)=0(q~", 1>3 cP(gkp)=0(k>+¢)""% not o((k*+4*) "), (24)

asymptotic behavior = (k,z) ~k*, 0 <@ < 2, is consistent with Eq. (6), but a solution with such asymptotic behavior cannot be
found by the Newton—Kantorovich-Lika (NKL) algorithm with zeroth approximation 2‘® = 0. In order to find such
solutions, one has to rewrite Eq. (6) in the form

S(kz)=k ~°Z(kz2) = ﬁﬂ:f% f dq f du V(g kp){z, + ©0*(9.)8 (g% 2(q..2,) + 18~ *7(g,)) "}

X{z—z, +a*(q_)B g% 2(g_z—z) +nB " *(q_))""} 7, (25)

and fix a zeroth approximation so as to make the left-hand side and the right-hand side coincide for certain discrete values of
the variables k and z and apply the NKL algorithm. Similarly, Eq. (19) may have a solution with asymptotic behavior

Akz)~k —**%-¢ 0Oc<ca =Max(a,b) <2, k- w.
{ll. CONCLUDING REMARKS

Though without actually (numerically) solving Eq. (6) and/or Eq. (19) one cannot definitely conclude whether the
Kirkpatrick model without simplication describes glass transition, these equations deserve further investigation because they
have many interesting mathematical features. Another question to be investigated is under what conditions solutions of
simplified equations give reliable conclusions about critical phenomena.
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A class of continuum models with no phase transitions

David Kilein

Department of Mathematics, University of California, Los Angeles, California 90024
(Received 2 March 1986; accepted for publication 28 July 1986)

For a restricted family of classical grand canonical continuum interactions, it is proved that the
Gibbs state is unique at all temperatures and fugacities. The interactions considered are not
translation invariant except in the one-dimensional case.

i. INTRODUCTION

More than ten years ago, Dobrushin developed a proba-
bilistic technique for proving uniqueness of Gibbs states and
applied it to one-dimensional classical lattice and hard-core
systems to establish the absence of phase transitions for
those systems.' In this paper, we apply the same technique to
a restricted class of continuum interactions in arbitrary di-
mension. Since one expects phase transitions in dimensions
greater than one for physically realistic interactions, the re-
strictions needed for our results must be strong. We consider
positive, superstable interactions with the additional re-
quirement that, loosely put, in dimension d the range of the
interaction in the radial direction decreases for some con-
stantc, as (cr + ¢)'/? — (cr)'#, when the distance 7 of parti-
cles from the origin becomes sufficiently large. For the pre-
cise requirements, see Condition 2.1 in Sec. II below. In spite
of the artificiality of the models considered here, we believe
that our results can shed some light on the conditions which
make phase transitions possible in more realistic models. In
addition the results obtained here show, in a sense, what is
really going on in the one-dimensional case, where the re-
strictions on the interaction potential are natural. The spe-
cialization to the one-dimensional case is made in Sec. IV,
where we also give some further discussion. For positive re-
sults on the existence of phase transitions for lattice and
some simple continuum systems, we refer the reader to a
paper of Bricmont, Kuroda, and Lebowitz’ and the refer-
ences contained therein. More general background informa-
tion can be found in Refs. 3 and 4.

Il. NOTATION AND DEFINITIONS

For a Borel measurable subset A CR let X(A) denote
the set of all locally finite subsets (configurations) of A.
Here B, denotes the o field on X (A) generated by all sets of
the form {seX(A): |[sNB|= m}, where B runs over all
bounded Borel subsets of A, m runs over the set of non-
negative integers, and | - | denotes cardinality. For later con-
venience we let (Q,5) = (X(R?),B,.). Let Q. be the set of
configurations in € of finite cardinality and Xy, (A) the set of
configurations in X(A) of cardinality V.

Let T: A¥— Xy (A) be the map which takes the ordered
N tuple (x,,....xy) to be the unordered set {x,,....xy }. For
N=1,23,.., let d"x be the projection of Nd-dimensional
Lebesgue measure onto X, (A) under the map T. The mea-
sured °x assigns mass 1 to X,(A) = {&}. When A is bound-
ed, define as in Refs. 3 and 5,

v

dx)= S Z_dn,
v, (dx) NZ:ON! x

(2.1)
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where z is chemical activity. For any bounded disjoint Borel
sets A and A’, there is a natural isomorphism between

(X(A),B, W) X(X(A"),By )
and

(X(AUA"),B, 5 sV aua)-
We will identify these spaces and write

(X(AUA"), By on sVaon')
= (X(A),By Vo) X(X(A"),B, v, ). (2.2)

We will consider S-measurable many-body interactions
V: Qp—( — w0, ] of the form

Vo =3 3 4,0,
N=1 »Cx
Iy| =N

(2.3)

where ¢5: Xy (A)—>( — ,0] is an N-body interaction.
For a bounded Borel set A of positive Lebesgue measure, we
define as in Preston® the S-measurable set R, CQ so that
V(x|s) represents the energy of the configuration xeX(A) in
A, assuming the configuration seR , NX(A°) outside of A.
The finite volume Gibbs state u, (dx|s) for A,V, inverse
temperature 3, chemical activity z, and external configura-
tion s is given by

i (dx|s) =expl — BV(x|5)]/Z, (5), (2.4)
where Z, (s) makesu, (dx|s) a probability measure. Under
general conditions on ¥, in particular Condition 2.1 below,
1<Z, (5) < . If s¢R , , define i, (dx|s) to be the zero mea-
sure.

Henceforth let a positive constant ¢ be fixed and let A,
denote the hypersphere of volume ck centered at the origin in
R Let 4, = Ay\A,_,.Ifd = 1, then A, is the interval of
length ck centered at the origin.

Condition 2.1: For an interaction V of the form (2.3):

(a) Vis superstable® and ¢, is positive for each N>2.

(b) There exists some positive integer k, such that for
all N32 and any x = (x,,....x5 )EQf,

dy(x)=0
whenever x;€A,, x;€A; , , for some pair i, j with 1<i, j<N
and some k3> k.

Remark 2.1: The requirement that ¢, be positive in
Condition 2.1(a) can be removed if ¥ has an nth body hard-
core restriction for some #n, analogous to that imposed in
Refs. 5 and 6. Condition 2.1(b) excludes translation-invar-
iant interactions except in dimension d = 1. For d3>2, the
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range in the radial direction of the interaction must decrease
as the distance of particles from the origin increases.

Let {m, } denote the specification associated with B, z,
and V (see Ref. 3, p. 16) defined by

7h(As) = f 14 (dx|sNAY), (2.5)
»

where seQ}, AcS, and 4’ = {xeX(A): xu(snA°)ed}.
Definition 2.1: A probability measure on (f,) is a
Gibbs state for the specification {7, } if

o(mp (4,5)) = 0(A)

for every AcS and every bounded Borel set AC R? of positive
measure.

Definition 2.2: For an interaction ¥, bounded Borel sets
A CA with positive Lebesgue measure, and seR5, the finite
volume Gibbs density 72 (x|s) is given by

A= [ =BV aplei)
8 X(ANA) Zx (sNA°)

Viaa (dy).

(2.6)

Note that if fis S measurable and f(x) = f(xnA) for all xe,
then

T (f,S)Eff(x)#x (dx|s) = S(x)rh (x|s)v, (dx).
X(A)
2.7

Ill. UNIQUENESS FOR ARBITRARY DIMENSION

In this section we prove, for any £ and z, uniqueness of
the Gibbs state correspondng to an interaction ¥ satisfying
Condition 2.1. The method of proof is based on an applica-
tion of a result of Dobrushin (Ref. 1, Lemma 1) which we
restate below for the convenience of the reader as Lemma
3.1

Let (X,By) be a measurable space and let 2, and u, be
probability measures on (X,B,). The variation distance
between the measures u, and y, is defined as

P(pptz) = Sup |u,(4) — po(4)]. (3.1)

AcBy
If 1, and p2, have respective densities p, and p, with respect
to a finite measure v on X, then defining p(p,,p,)

=p(U,i4,), we have
pP(pyp2) = %‘L |2, (x) — po(x)|v(dx)

=1 —f min(p, (x),p,(x))v(dx). (3.2)
X

Uniqueness of the Gibbs state for ¥, 8, and z follows pro-
vided

nlim Ssgg |7a, (fi8) — 75 (fi)| =0 (3.3)

for any bounded S-measurable function f which satisfies
J(x) =f(xNA) for some bounded set ACR and all xe(}
(see Lemma 9.3, Ref. 3). From (2.7) and (3.2), Eq. (3.3)
holds as long as

lim sugp[rﬁf( O E ] =0 (3.4)

n— oo t,5€
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for each fixed positive integer k>k,, where k, is given by
Condition 2.1.
Lemma 3.1 (Dobrushin): Let (X, ,B; ,v;) be a measure
space for j = 1,2,3, and let
3

(X’Bst) = H (Xj ’Bj ’Vj)

Jj=1
be the product measure space with measure v = v; X v, X ¥.
Letp!( - ) and p?( - ) be densities with respect to v for prob-
ability measures on (X,By ). Consider the marginal densities

Pll (x) =f Pi(xpxz»xs)vz(dxz)v3(dx3),

P‘;.z (x,,%,) = J-Pi(xl’xz;xg)V;;(dJ%), for i=1,2,

and the similarly defined densities pj(x,), pi(x;),
Pls (x1,x3), and ph 5 (x,,x3) for i = 1,2. Suppose there exist
conditional densities p} (x,|x,,x;) and p , (x,|x,) for which

P'(%1,X2,X3) = pi (x4]x2%3 )Plz,s (x25%3),

Pia(xp%,) =pl s (% [%2)P5 (%) (i=1,2).
Then

p(pl.p})<ap(py.p3) + @l —p(p3.p3)),
where

a= sup pp; (- |x2%3).p] ( - |%2,%5)),
X %X,

j=12

@= sup plpi (- rzxs) P (- [xaks)).
X3,%3€X3
Let some integer k > k,, be fixed and suppose n> k + 1.
In the language of Dobrushin’s lemma, we let

(XpBl) = (X(Ak ),B,\k),
(X5B,) = (X (4 1, )’BAk+l)y
(X3,B3) = (X(A,\Ay1),Bp A, )

(3.5)

For a configuration xe(, let

xl=ank, x2=ank+1, x3 =xﬂ(A”\Ak+1).

The measure v of Lemma 3.1 is identified as
V=, XV, , XVrA,,, =Va, because of (2.2). For
i=12let

; exp[ — BV (x,uxux;ls;) ]
P(x),x3,%3) = ’

(3.6)
ZA,, (s:)

where 5,,5,€X(A¢) are chosen arbitrarily. It follows that

Pi(x) =r(xyls), (3.7)
Ph(3) =r 1 (xyls)), (3.8)
P‘; (x1]x20%3) = exp[ —ﬁV(xdszx:,USi)] . 3.9)

Z,, (x;ux3s;)

Lemma 3.2: Let V satisfy Condition 2.1. Then for any
Bz>0,s,,5,X(A},), k>ky, and ye(A,_,),
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exp[ — BV(D,Wyls,) ]
Z,, (s;)

exP[ —BV(QkUJ'L’:) ]
Z, (sy)
where &, is the empty configuration in 4, and c is given in
the definition of A,.
Proof: Since V is positive, V(D Wp|s,) <V (¥, wyls,) for
any y,€X (A4, ). It follows that

f J. exp[ — BV(DWpls;) V4, (@yi ) va,_ (dy)
X(A_ ) Ix(ap

) (3.10)

>exp( —cz)

> J. f exp[ —BV(Wis;) |
X(Ay_ 1) JXC4,)
XV, @y )va,_ (dy).
From (2.2) it follows that

f exp[ — BV(DWpls;) |Va,_, (dy)
X(Ai_ )

> [ V4, (X(4:))] 7'Z,, (52) = exp( —c2)Z,, (s,).
(3.11)
Also

Z, (sy) =f : f exp[ —BV(D,ws)) ]
X(Ap 1) JX(4)
Xexp[ — BV (yiwsy) 1V, (dyi)va, _, (dy)

>LA exp[ — BV (Dyls)) 1va, _, (dy),
(Ag_p) (3.12)

because
f exp[ — BV (i [s)) |, (dyi ) 5v,, (D) = 1.
X(Ap)

From Condition 2.1,
V(S wls)) = V(D wyls)) = V().
Combining (3.11)-(3.13) gives

exp[ —BV(D,Wwlsy) 1va, _, (dp)

(3.13)

ZA,‘ (s))>

X(Ap )
>exp( —cz)Z,, (s;)- (3.14)

Now combining (3.13) and (3.14) yields the desired result.
This completes the proof.
Lemma 3.3: Let V satisfy Condition 2.1. Then for any
B,z > 0 there exists an 4 > 0, independent of & such that
PP (- |x2%3) .07 (- [%2,%35) 1<1 — A, (3.15)

for all 5,,5,,%,,%5,%3,%5.
Proof: Since V'is positive and 4, has Lebesgue measure ¢

for each k,
sugf exp[ — BV (x|snAL) ]v,, (dx) < 0. (3.16)
k>ﬂ X(A4;)

For any interaction ¥ and any s€(2,

exp[ —BV(D.|snAL)] =1,
where &, is the empty configuration in 4, . Thus
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inf ﬂAk({Qk},t)Eh,>0. (3.17)
k>k,

=
From the consistency® of the specification,
TA, ({Qk }15) = f Ta, ({gk }a t)ﬂ',\k (dt;s)>h|, (3.18)
for any seX (A% ). Hence,

7, ({@i }.5)
=f exp| _By(gku(ynl\k—l)ls)]
{BIUX(A,_ ) Z,, (s)
X ¥y, (dy)>h,. (3.19)

Combining (3.10) with (3.19) and (3.9) yields

f min[Pl(xllxz’xs)’Pz(xl|iz»i3)]VAk (dx,)
1B IX (AL _ )

(3.20)

for all s,,5,,%,,%,,%3,%;. Now combining (3.20) with (3.2)
gives (3.15) with A = h, exp( — cz). This concludes the
proof.

Lemma 3.4: Let V satisfy Condition 2.1 and let 8,z> 0.
For any integers # and & with n>k 4 3>k, + 3 and any
s,teq},
plracC 19 D]

<A =mp[re' (- - 1D ],
where 4 is given by Lemma 3.3.

Proof: With the identifications (3.5)-(3.9), the term @
in Lemma 3.1 is zero for any choices of k>, and n>k + 3
because of Condition 2.1(b). '

From Lemma 3.3 we obtain a<1 — 4, where 4 is inde-

pendent of & and n. Applying Lemma 3.1 together with
(3.7) and (3.8) then gives

P (- 19),r3% (- 1)

>h, exp( —cz),

(3.21)

(1= h)p(rRe+ (- 1), 7+ ( - 1)), (3.22)
But
PR (- [S),FR 1+ [D)<p(ra= (- ), rae = (- 1),
(3.23)

because 4, ., CA, , ;. The proof is completed by combin-
ing (3.22) and (3.23).

Theorem 3.1: Let V satisfy Condition 2.1. Then for any
B.z> 0, there is at most one Gibbs state for V.

Proof: A simple induction argument together with
(3.21) shows that given any positive integer /,n can be cho-
sen large enough so that

sup p[ A4+ I9).rat (- 1) ]

<(1 —h)':ggp[rﬁt“( . |s),r2:+’( . |t)].

Equation (3.4) now follows by letting 7 and / go to infinity.
This concludes the proof.
Remark 3. 1: Existence of Gibbs states for interactions of
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the type considered here can be established using the meth-
ods of Refs. 3 and 7.

IV. THE ONE-DIMENSIONAL CASE

In this section we consider the question of uniqueness of
the Gibbs state for all 8,z > O in the special cased = 1. When
d = 1, Theorem 3.1 specializes to the following result for
translation-invariant interactions.

Corollary 4.1: Let d = 1 and suppose V'is a translation-
invariant, finite-range, positive, superstable interaction.
Then V has a unique Gibbs state for all positive 5 and z.

Proof: From the definition of A, in Sec. I, A, is the
interval of length ck centered at the origin of R'. Choose ¢ to
be a number at least twice as large as the range of V. With this
choice of ¢, V satisfies Condition 2.1 and the result follows
from Theorem 3.1.

Remark 4.1: Using different methods, this result was
already established as a special case in Ref. 8 and subse-
quently in Sec. II of Ref. 6, where it was proved but not
explicitly stated.

Conditions on the interaction other than those imposed
by Corollary 4.1 have been studied in regard to the question
of uniqueness of the Gibbs state for d = 1. In Ref. 5 unique-
ness was proved for infinite range, translation-invariant (not
necessarily positive), superstable interactions for which
there is an n-body hard-core restriction for some n>2. Pre-
viously, Dobrushin' proved uniqueness and related results
with similar restrictions for the important case n = 2.

In Ref. 6 an incorrect proof was given for uniqueness of
the Gibbs state for finite-range, superstable interactions (not
necessarily positive). With minor modifications, the proof
establishes the following. For any 8,z > 0, let F'be an interac-
tion, at least one of whose Gibbs states is supported on

U,=U U,

mp1
where

U, = {seQ: |sN[nn+ 1)|<m for all integers n}.

Then exactly one Gibbs state for ¥ is supported on U_ for
each 82> 0.

For translation-invariant interactions, the condition
that a Gibbs state for ¥ is supported on U_ evidently re-
quires a hard-core restriction of the type considered in Refs.
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5 and 6. But when translation invariance of the interaction V'
is not required, then one would expect some Gibbs state for V'
to be supported on U_, provided an external repulsive force
(i.e., one-body interaction) increases sufficiently rapidly as
the distance from a particle to the origin increases. Alterna-
tively if ¥is such that the repulsion between nearby particles
increases sufficiently rapidly as their distance from the ori-
ginincreases, one might also expect some Gibbs state for ¥ to
be supported on U . As a simple example of a nontransla-
tion-invariant interaction whose unique Gibbs state is sup-
ported on U_ , but which is not of a type considered in any of
the previous references, we give the following.

Example 4.1: Let ¥, be any finite-range, superstable in-
teraction. For any fixed positive integers £ and N and any
X = (XyyeesXy VEQ g, let

O (x)

o, if mjax|x,.—xj|<1 and xq[—kk],
i

0, otherwise.

For any xe{} define

Vx)=V(x)+ 3 @),

yCx
Iyl =N

Then any Gibbs state for V is supported on U_ , and conse-
quently by the method of Ref. 6, the Gibbs state for V is
unique for any 5,z > 0.
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Central-limit theorems on groups
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The probability density p, of the product of N statistically independent (and identically
distributed, each with probability density p,) elements of a group is studied in the limit N oo.
It is shown, for the compact groups R(2) and R(3), that p,, —1 as N— 0, independently of p,.
It is made plausible that a similar behavior is to be expected for other compact groups. For
noncompact groups, the case of SU(1,1), which is of interest to the physics of disordered
conductors, is studied. The case in which p, is isotropic, i.e., independent of the phases, is
analyzed in detail. When p, is fixed and N 1, a Gaussian distribution in the appropriate
variable is found. When the original variables are rescaled by 1/N and the limit N - « is taken,
keeping the ratio of the length of the conductor to the localization length fixed, an explicit
integral representation for the resuiting probability density is found. It is also exhibited that the
latter satisfies a “diffusion” equation on the group manifold.

I. INTRODUCTION

The central-limit theorem' (CLT) is one of the most
powerful results in the theory of statistics and has very im-
portant consequences in many physical problems. It studies
the distribution of the sum x of N statistically independent
random variables x;,

N
x=‘z x;,

i=1

(1.1)

in the limit when N— cc. With only very general assump-
tions on the individual distributions, it states that
&= (x—~X)/(varx)"/? (with¥ = 3,X,, varx = X, var x;)
becomes a Gaussian variable with zero centroid and vari-

ance 1. An alternative statement is that, under successive -

convolutions, a distribution finally approaches a Gaussian

limit. The power of the theorem lies in the insensitivity of the

asymptotic distribution to the distributions of the individual
x;’s.

The standard proof of the CLT uses the fact that the .

Fourier transform (FT) of a convolution is the product of
the individual FT’s. One then finds, for the limit of that
product when the number N of factors grows, a Gaussian in
k (the variable conjugate to x), which implies a Gaussian
in x.

Alternatively, we can rephrase the above problem in the
following language. Consider, along some axis, successive
translations T'(x; ) by the amount x,, and designate by 7(x)
the resulting translation by the amount x = Z¥_, x,. Equa-
tion (1.1) is then equivalent to

T(x)=T(x,) " T(xy). (1.2)

The T(x;)’s are the elements of the translation group T',.
If D denotes any representation of T, (1.2) implies

D(x) =D(x,) --- D(xy) . (1.3)
Call p,, (x) the probability density of x and assume for

*) Also at Departamento de Fisica, U.A.M.-Iztapalapa, Mexico, and fellow
of the Sistema Nacional de Investigadores, Mexico.

® Mailing address: Instituto de Fisica, UNAM, Apartado Postal 20-364,
Delegacion Alvaro Obregon, 01000 México D.F., Mexico.
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simplicity that all the x,’s have the same probability density
P1(x;). Averaging both sides of (1.3) we then have

D)y =(D), (1.4)
where we have used the notation

(D), =fD(X)p1(x) dx, (1.52)

D)y =JD(x)pN(x) dx . (1.5b)

In particular, if D is the unitary irreducible representa-
tion ¢**, the problem reduces to finding the limiting form of
(¢**)Y, and then inverting the FT to obtain p, (x).

There is a problem of current physical interest that can
be formulated precisely in the above language and that moti-
vated the present investigation. It is the one-dimensional
problem of scattering by a succession of N random scat-
terers.” The scattering by the ith center can be represented by
a2 X 2 transfer matrix R,, which, from flux conservation and
time-reversal invariance, must be pseudounitary and uni-
modular. The collection of matrices R; forms the group
SU(1,1) (see Refs. 3 and 4), which is a noncompact group
homomorphic to the Lorentz group SO(2,1). The resulting
transfer matrix R can be written as

R=R\R, " Ry. (1.6)

This equation has the same structure as (1.2). Suppose
that we consider the individual transfer matrices R,
(i =1,..,N) as statistically independent and that we pro-
pose, for each one of them, the same probability density
P1(R;). The problem is to find the distribution p (R) of the
resulting R of (1.6) and study whether in the large-N limit
the answer is independent of the input p,(R,). If this were
so, we would have a CLT on the group SU(1,1), just as the
ordinary CLT can be associated with the group 7.

The above concepts can actually be studied in connec-
tion with an arbitrary group, so that, besides its physical
applications, the problem has an intrinsic mathematical
interest.

The above questions have previously been addressed in
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the literature by several authors.>® For instance, in Ref.
7(a) it is shown that a strong law of large numbers is valid
for the elements R; of the R of (1.6), in the sense that
N~ 'InR j—@ (where a is a constant) with probability 1,
provided the elements of the R,’s (n = 1,...,N) are positive
and bounded away from « and O in an appropriate sense. In
Ref. 7(b) alaw of large numbers is shown in connection with
matrices belonging to a noncompact semisimple Lie group.
In Ref. 8 a CLT is proved for the amplitudes of plane waves
traveling in a semi-infinite isotopically disordered harmonic
chain; the theorem is then applied to the problem of heat
conduction in disordered harmonic chains.

Despite of the extensive literature in connection with
this problem, we thought that the simplicity and appeal of
the spectral analysis* employed here, as well as the direct
applicability to physical problems'® of some of the explicit
results that we obtain, made it worthwhile to publish the
present article.

We thought that it would be easier to first study a CLT
in the case of compact Lie groups. The groups R(2) and
R(3) are studied in detail in Secs. II and III, respectively,
following a line of thought that parallels very closely the one
given above for T, Egs. (1.2)—(1.5). The analysis is actually
generalizable to other compact groups, and this is indicated
at the end of Sec. III.

In Sec. IV we make some considerations for the ordi-
nary CLT. The study ofa CLT on SU(1,1), the main contri-
bution of the present paper, is carried out in Sec. V, again in
close parallel to that on T, outlined above. This is the only
nontrivial noncompact group that we have studied so far.

Finally, we give in Sec. VI'a summary of the results and
some perspectives for future investigations.

il. THE CLT AND THE GROUP R(2)
The group elements are of the form
cos¢ sing
R(#) =(—sin¢ cos¢)'
We construct the product of N such group elements R;
= R(4,;):
R=R\R,-"Ry.

2.1)

(2.2)

Suppose that ¢,,4,,....¢ are statistically independent,
all distributed with the same differential probability dP, (¢, )
= p,(¢,)dd,/2m, where the probability density p,(#;) is a
non-negative function defined on the unit circle. We consid-
er the resultant R as defined by (2.2) (without the normali-
zation factor 1/\/N of the familiar CLT) and inquire about
the resulting probability density py (¢) in the limit N — oo.
We can perform a Fourier decomposition of p,(#) and
Pn(#) in terms of the unitary irreducible representations
™ of R(2):

)= Y e ), (2.3a)
Pnip)= 3 (e ™)y, (2.3b)
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where
(e~ ™), = J-e_im P1(4) -di, (2.42)
27
(e ™), = f e~ "y () L2 ) (2.4b)
27

if we know (e~ ") ,,, we can thus evaluate py (¢).

Similarly to (1.3) we can write
eim¢ — e"’”¢| v eim¢N .

(2.5)
Averaging both sides of (2.5) we obtain, justasin (1.4),

(e )y = (™). (2.6)
From Appendix A we have the strict inequality
[(e™),| <1, m#0. Q.7

Thus, for m#0, (¢™*)¥ -0 as N— 0. Only m = 0 survives,
giving

(€™?) » v Smo - (2.8)

The resulting probability density py, (#) is then

) = 1, (2.9)
regardless of the individual distribution p,(4,).

The differential probability

dPy =d¢/2m (2.10)

is thus proportional to the invariant or Haar’s measure of
R(2), in agreement with the results of Refs. 5 and 6.

Since the group R (2) is compact, repeated convolutions
of p,(¢;) with itself thus tend to fill the whole space avail-
able, with a resulting probability density that is proportional
to the invariant measure of the group, regardless of the initial
().

We would like to describe an alternative point of view
that emphasizes the idea of convolution.

Suppose that we have convoluted p,(#) with itself N
times, giving a result p, (#). If we convolute once more, we
have

puar@® = [ PG 8 -9 2.
w

Suppose that p,(#) indeed approaches a limit as
N- oo,'i.e.,

(2.11)

Igijrl Pn () =p(4). (2.12)

Then Eq. (2.11) gives

p($) =fpl(¢1)P(¢“¢1) %, for all P1(¢;1) . (2.13)

This integral equation has to be satisfied by the limiting
form p(#) in question, independently of p,(¢,). Result
(2.9), i.e., p(¢) =1, is certainly such a solution, because
§p.d¢,/2m = 1. To convince ourselves that this is the only
solution, we Fourier transform both sides of (2.13):

(™) = (™) (™) . (2.14)
If (¢™¢) were nonzero for a set of m’s, we could divide
both sides of (2.14) by (e™), with the result that
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(e™*#), = 1for all those m’s and for arbitrary p,. But accord-

ing to (2.7) this can only happen for m = 0, so that (¢™*)

can be nonzero only form =0, i.e.,
(eim¢) =80

and, from (2.3b), p(¢) = const.
For a presentation of a CLT in the language of Eq.

(2.13), the reader is referred to Ref. 11, where generaliza-
tions to dependent variables are studied.

(2.15)

IIl. THE CLT AND THE GROUP A(3). MORE GENERAL
COMPACT GROUPS

We denote by R; (i = 1,...,N), N elements of the group
R(3) and construct the product

R=RR, -Ry. 3.1
We suppose that R,,...,R, are statistically independent

and all distributed with the same differential probability,
which we write as

dP,(R;) =p,(R;)du(R;) . (3.2a)

In (3.2a), p,(R;) is a non-negative function defined on the
group manifold and du (R, ) is the invariant or Haar’s mea-
sure of R(3).

Again we inquire whether the resulting differential
probability

dPy(R) =py(R)du(R)
has a limiting form as N— oo.

We can perform a “Fouri¢r decomposition” of py (R)

and p, (R) in terms of the unitary irreducible representations
D' .(R)of R(3):

(3.2b)

PrR) = 3, Doy (RYD o} (3.32)

Pv(R) =3 D (RUD )% » (3.3b)
where "

D! = JDLm. (R)p,(R)du(R), (3.4a)

(D Iy = fD',.m, (R)py(R)du(R) . (3.4b)

The D!, are arthogonal under the measure du(R),
which we assume normalized, i.e., fdu(R) = 1.

For the / representation we can write, from (3.1),

D'(R)=D'(R,) - D'(R,) . (3.5)

We now multiply both sides of (3.5) by
P1(R)Au(R,) - p,(Ry)du(Ry ) and integrate. On the rhs
we obtain (D ’)¥, using the notation of (3.4a). On the other
hand, the lhs can be considered as defining the integral
SD'(R)py(R)du(R) [where py(R) is our unknown],
which we denote as (D ') y, using the notation of (3.4b). We
thus have

(D')y =(D"HY. (3.6)

Knowing (D'), V I, we can recover py(R) through
(3.3b).
Itis proved in Appendix B that the matrix (D'} is strict-
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ly “subunitary” for / #0, in the sense that for an arbitrary
normalized (2/ + 1)-dimensional vector u, we have

(DY DDYu<l, 150. 3.7

It is also proved that (D )? is even “‘more subunitary” than
(D), in the sense that

(DT (D'Y1u<u™ (DY (DYu, 1:0.
(3.8)

If we choose u; = §;, (3.8) gives

;l[(DI)Z]kilz <;I(Dl)kllz, 1#£0. (3.9)

Thus the quantity 2, |[(D'}¥].|% 1#0, decreases
with N and tends to zero as N— «. Since it is a sum of
squares, each term tends to zero, which means

<D’>N=<D’>{’N¥» 0, /+#£0. (3.10)
The only / that survives is thus / = 0, i.e,,
DOYy=1, (3.11)
so that (3.3b) gives the probability density
pv(R) - 1, (3.12)
N— e
and hence the differential probability
dpy(R) Py du(R) . (3.13)

Just as in the previous section, we reach the conclusion
that successive convolutions of a given probability density
finally end up with the invariant measure of the group.>*

We would now like to describe the situation in a lan-
guage that emphasizes the idea of convolution, just as we did
for R(2).

The convolution A(R) of two functions f(R), g(R) de-
fined on R, will be taken as

h(R) = f SRDE(R [ 'R)du(R,)

which is a generalization of the ordinary concept. If D is a
representation of the group, one can easily show from (3.14)
the “convolution theorem”

(3.14)

(D), =(D) (D), . (3.15)
Here
(DY, = [ DR ARR) (3.16)

and similarly for (D ), and (D ),.

Let us recall Eq. (3.5) for the particular case NV = 2. As
we mentioned right after that equation, the lhs of (3.5), mul-
tiplied by p, (R, )du(R,)p,(R,)du(R,) and integrated, was
taken there as defining D ‘(R)p,(R)du(R). We now see
that this is equivalent to defining p,(R) as the convolution
(3.14) of p, with itself.

Let us thus assume that we have convoluted p, (R) with
itself N times, giving a result p, (R). If we convolute once
more we have

Pras(R) =fp,<R1>p~(R FRMER) . (AT
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Suppose that p,(R) indeed approaches a limit as
N-o w,ie,

hllim pv(R) =p(R). (3.18)

Then Eq. (3.17) gives

P(R) =fp1(R,)p(R T'R)du(R,), for all p,(R)).

(3.19)

This integral equation has to be satisfied by the limiting
form in question, independently of p,(R;). Result (3.12),
ie, p(R)=1, is certainly such a solution, because
.f_P;d.u(Rl) =1

In this case we have not succeeded in actually finding
the solution of Eq. (3.19) by “Fourier transforming” both
sides of the equation, i.e., by multiplying (3.19) by D/(R)
and integrating over R, as we did for R(2). If we perform
that operation, we obtain

(DY =(D"){D"). (3.20)

If, for a set of I’s, (D'} is nonsingular, then (D'), =1
for those /’s and for all p,’s. But, according to (3.7), this can
only happen for / = 0, so that (D) can be nonsingular only
for I = 0. We thus reach the conclusion that
Lg_m' (R ) <D in,m’ )* L

pRY=1+ 3 D (3.21)
I=1

with det(D’,,.) =0, /> 1. From this argument we cannot
conclude that (D/,.) =0,/> 1.

The above ideas can be generalized to other compact
groups, at least the unitary and the orthogonal ones, if / is
taken to represent the index of the unitary irreducible repre-
sentation and m its row. A spectral analysis, as in Eq. (3.3),
can be done quite in general. The sum is over all unitary
irreducible representations, including the “scalar one”
1 = 0, that assigns 1 to every element of the group. One again
finds, as in (3.10) and (3.11), that the scalar representation
is the only one that survives as N — «, and hence the conclu-
sion (3.13) that the differential probability tends to the in-
variant measure of the group. Equation (3.19) is valid more
generally, too. Again we see that p(R) = 1 is a solution of
that equation, but we have not been able to prove that that
solution is unique.

IV. THE CLT AND THE GROUP T,

This is the standard CLT that was outlined in the Intro-
duction. The purpose of this section is to indicate a few con-
siderations that we want to contrast with the analysis pre-
sented in Secs. II and III on compact groups and in the next
section on the noncompact group SU(1,1).

Calling, as before, p, (x) the probability density of
x=x;+ *** + Xy, wefirst look for the asymptotic form of
pn(x) for N3 1. We assume p,(x;) to be centered at the
origin, and use the notation

(), = eh®

(4.1)
for the complex conjugate of the quantity occurring in
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(1.5a); ¢,(k) is the “cumulant generating function” ! of
p1(x), which, when {x), = 0, can be written as

2 L3
__02+£_k.._K3_ e,

k 42
¥ (k) = 5 3 (4.2)
where 0% k..., are the second, third,..., cumulants of p, (x).
The asymptotic form of
pu(xy = [T et g, .3
2rJ_w '

for N» 1 can be easily found using the saddlepoint approxi-
mation. A similar procedure will be followed in Sec. V for the
group SU(1,1). Calling

(k) = ikx + Ny, (k) , (44)
the saddle &, satisfies @’ (k,) = 0, so that
¥, (ko) = — ix/N. (4.5)

Suppose |x| S O(JN ). Then |¢; (ko) | €1if N3 1; from
(4.2) we then find
ko=~ix/No?, (4.6)
so that the saddle point is very close to the origin. The inte-
gral thro'ugh the saddle is then approximately
172 — x%/2Nd*

~__ w(ko)
Py = = G

4.7
[ |“’ (ko)l ] @7

the famlllar result.

As weincrease the number N of convolutions, the result-
ing probability density p, (x) stays centered at the origin,
but since T, is noncompact, p,, (x) becomes wider and wider
and tends to zero at every x as N— . However, if we nor-
malize p, (x) to its value at the origin, i.c.,

=_e—-x’/2Na2 ,

(4.8)

we obtain a function that in any fixed interval Ax becomes as
close to 1 as we please by taking N large enough. The reason
for this behavior is that only a small region around the saddle
kg of (4.6) contributes effectively to the integral, if N> 1;
since |k,| €1, e**=const gives the dominant contribution.
This result, which implies that the differential probability is
proportional to dx, which is Haar’s measure in this case (in
great similarity with the behavior of compact groups studied
in the previous sections), is, however, a peculiarity of 7', and
is by no means a general behavior of noncompact groups. In
the next section we shall see the corresponding behavior for
the group SU(1,1).

We can gain more insight into the above situation by
describing it from the point of view of convolutions, just as
we did in the previous sections for compact groups. At the
(N + 1)st convolution we have

DPnin (x) =f Pi(x)pn(x “‘xl)dxl . (4.9)

We divide both sides by p,, (0) and define g, (x) as in
(4.8):
Pn+1(0)

pn(0)

Assuming that, as N— o, the limits

gn+1(X) =f Pi(x1)gy(x —x,)dx,. (4.10)
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hl,im gn(x) =¢g(x), (4.11)
0
lim Py (O _ o (4.12)
N o pN(O)
exist, then g(x) must satisfy the integral equation
Kq(x)-:f pi(xy)g(x — x,) dx, . (4.13)

We know a posteriori, from (4.7), that X = 1: then
g(x)=1 indeed satisfies (4.13) for arbitrary p,(x). That
K =1 and g(x) =1 is the only possibility can indeed be seen
by assuming that the limit (4.11) is independent'? of p, (x,).
Fourier transforming both sides of (4.13) we have

K (%) = (e**) (™), (4.14a)
where

(%) = fq(x)e"“ dx, (4.14b)

(%), = J.pl(x)e”“‘ dx . (4.14¢)

If there were a range Ak for which (e**) 0, we would
have K = (¢**), for that Ak. If p, is arbitrary, its Fourier
transform does not have to be constant over that Ak. Then
{e**) can only be nonzero at one isolated point k,, i.e.,

(") = gob(k — ko) . (4.15)
Integrating (4.14) in a small region around k, we then have
K= <€'k"‘>l . (4-16)

[Notice that if (4.15) were replaced by the sum
2,9:6(k —k;), (¢**), would have again to take the same
value X at all those k;’s.] The inverse Fourier transform of
(4.15), g(x), is then

g(x) = (go/2m)e"* . (4.17)
But ¢(x) must be real and positive, so that k, = 0 and thus
K = 1-and g¢(x) = const.

Qualitatively it is very clear why K = 1:since py (x) has
a variance No® (and hence a width YNo° ), py(0)
~1//Nd?, and

K=Al,im [(N+ 1)d*/No*1V2=1.

This result depends very directly on the structure of the
group. If the “expansion” of py (x) as N grows were differ-
ent, K might differ from 1, and hence ¢ = const would 7ot be
a solution of (4.13). This will indeed be the case for the
group SU(1,1) to be studied in the next section.

Let us now go back to the result (4.7). That result im-
plies immediately that, if instead of x we consider the renor-
malized variable

E=x/|N, (4.18)
its probability density, as N— oo, is
p(&) =e 57/ 2n0” . (4.19)

The standard proof of (4.19) uses the fact that the Four-
ier transform of p(£) can be obtained from that of p (x) by

replacing k by k //N; (4.2) then implies
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exp NY(k /N) ok 20%/2,
whose inverse Fourier transform is (4.19).

V. THE CLT AND THE GROUP SU(1,1)

We present in Appendix C an outline of the properties of
the group SU(1,1) that will be needed in what follows. We
thus refer the reader to that appendix for the relevant con-
cepts and for the notation employed in this section.

The CLT problem can again be posed in the language
used in Sec. III, Egs. (3.1) and (3.2). Now R; (i = 1,...,N)
and R denote elements of SU(1,1) [Eqgs. (C2)] and du(R)
the invariant measure of Egs. (C12) and (C15).

Just as we did in Eqgs. (3.3), using (C9) and (C28) we
can now spectral analyze p,(R) and p, (R) in terms of the
unitary irreducible representations D% . (R) of SU(1,1):

P1(R) = Z z
bt k=137,

+ 3 3 [T DRy wisras,
c%172 mm’ JO

(5.1a)

D ﬁm' (R ) <D Zm’ )ll.wk

Pn(R) =

D k

z D:‘nm' (R)<D ﬁlm' ))‘V Wy
=13/2,..

+ Z EJ. DIZFXB(RY(D A+ )hw(s)ds,
%172 mm' JO

(5.1b)

where we have used the symbols
(D )1 =fD’;,m.<R)p1(R)du(R>, (5.2a)
(D o I =fD';,..,'(R)pN(R)d/4(R), (5.2b)

which play the role of the “characteristic function” in the
usual probability theory.'

As noted in Appendix C, below Eq. (C8), these expan-
sions do not contain the trivial one-dimensional unitary rep-
resentation that assigns 1 to every group element.

For the k th representation we have the equivalent of
Egs. (3.5) and (3.6), i.e,

D*(R)=D*R,) - D¥(Ry), (5.3)

(D*)y = (DY (5:4)

Introducing (5.4) in (5.1b) we have, in principle, the
exact answer for p (R), for any given p,(R).

We have been able to study in detail the case in which
the initial probability density p, (R) is isotropic, i.¢., indepen-
dent of the angles u,v of Eq. (C10), i.e.,

P1(R) =p,(p) .
This is the case that we analyze in what follows.
Due to the structure (C16) of D% . and the fact that
— w<u, v<, an isotropic p, (R) implies that the expecta-
tion values (D%, .}, of (5.2a) are all zero, except when
m = m’' = 0. From the classification given in (C4)-(C8) we
thus see that the only representations that give a nonzero

(5.5)
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(D¥%,.), are those that belong to the continuous class, for
the integral case C¢ (only the principal interval k = } + isis
relevant): for them, the only nonzero matrix element is the
m =0, m' = Ooneand, from (5.4),its N th poweris the only
nonzero matrix element of (D ¥ . ) 5. All the other represen-
tations give identically zero matrices for (D%, ), and
{(D*, .)y. In conclusion, for the only relevant representa-
tions kK = } + s we have

(D2F5Y = 8,080 (D), (5.6a)
(DM2FS)y = 8,00mo{D G TN, (5.6b)

showing that if p, (R) is isotropic [Eq. (5.5) ], the resulting
py(R) also is [see also Appendix C, Eq. (C39)].

From (C16)-(C18) we write the relevant representa-
tion as
D+ (upw) = Fi(} +is, § — is;1; — p)=£,(p) ,

(5.7a)

and we now indicate some of its properties.

The function f;(p) satisfies the differential equation®

g,
_a_[p(l+p)_f;_(p)_]+(sz+i)f;(p)=0_ (5.7b)
dp dp 4

Due to the symmetry of the hypergeometric function
,F, under the interchange of its first two indices, it is clear
from (5.7a) that f, (o) is real. Its series expansion in powers
of p (forp <1) is®
fip)y=1-[F+ e+ [+ 1] [s*+ ]
X%/ (2)% — - (5.8)
The above series, or one of the integral representations

of ,F, valid for all p, shows that f; (p) is actually a function
of s°. For s = 0 one can show that

folp) =Q/mYA +p)~ V21 K (p/(1 +p)),

(5.9a)

10
09

where K is the elliptic integral defined in Ref. 13, so that
Jo(p) is always positive. The asymptotic behavior of f;(p)
forp»lis

folp) ~(Inp)/(mp'?), p>1. (5.9b)

From the asymptotic form (C19) we see that for s5#0
/. (p) oscillates around the value zero, with a wavelength
that decreases as s increases. The behavior of f; (o) has been
plotted for various values of s in Fig. 1.

In terms of the functions f, (p) we can write the expan-
sion (5.1) as

() =£ £, Yuols) ds, (5.10a)

Pn(p) =L L) (S, Yyw(s) ds, (5.10b)
with w(s) given by (C21b), i.e.,

w(s) = 2s tanh 7s, (5.11)

and ( )y = (f.)?, where
(f;)1=J; L(p)p1(pYdp=F,(s)=e",  (5.12a)

(fi >~=L £ (pYdp=Fy(s)=e"™ . (5.12b)

The analysis that follows parallels very closely the one
given in the last section for the usual CLT, starting with Eq.
(4.3), which has its equivalent, for SU(1,1), in Eq. (5.10b).

Before proceeding, though, we shall use the functions
F(s) and ¢(s) defined as in Eq. (5.12) for an arbitrary p(p),
to define the equivalent of moments and cumulants of the
usual probability theory.’

It will prove convenient to expand F and ¥ in terms of

o8
07
06
05
04 i
03t
02
01 R

—

FIG. 1. Thefunctionf, (p) of Eq. (5.7a) asa

-04 H
0.2 r—
-0.3
04
-05 -
06
O7F
-0.8
09
-04 ] .1 ? .1 1 ‘1 .1 .1

§=2

T

function of p, for s =0, 0.5, 2, 5, 10.
$=10 ;

2681 J. Math. Phys., Vol. 27, No. 12, December 1986

P. A. Mello 2881



the variable ¢ {defined in Eq. (C3) ], which, in the present
case, is given by

g=s5+}. (5.13)
We notice from (5.8) that
F(g=0)=1, ¢(¢g=0)= (5.14)

We can reexpress the expansion (5.8) of f; (p) asa pow-
er series in g, to get

;=3 ¢,.(p)%, (5.15)
n=0 :

where, by using the procedure of Appendix F, one can show

$olp) =1, (5.16a)

$:1(p) = —In(1+p), (5.16b)

¢z(p)=2rm/-}ﬂdp'—21n(l+p), (5.16¢)
0

Averaging both sides of (5.15) with p(p) we can thus write

Fp=3uL, (5.15)
n=0 n!
where the “moments” u,, are defined as
Un = (8. () . (5.17)
We can also expand In F as
¥(q) =InF(g) = Z x, L (5.18)
n=1
where the “cumulants” «, are deﬁned as
Ki=Hy, (5.19a)
Ko =l — 1} , (5.19b)

The cumulants «,, of Eq. (5.19) add under the convolu-
tion of independent variables. In particular, since
k= ~— (In(1 +p)) = — (2) [see definition (C13b)], we
have, for the probability densities py (p) and p,(p) of Eq.
(5.10),

(2)y =N (2),. (5.202)

The average of the variable z thus scales with N. The
quantity (z) y is usually written in the literature as'*

(Z)y=(—InT)=2L/L,, (5.20b)

where L is the length of the conductor and L, its localization
length.

A.The asymptotic form of p,(p) for p.(p) fixed and N> 1
Since p, (p) is kept fixed, (z), [see definition (C13b)]
stays fixed, so that, from (5.20), L /L > 1.
We write p,, (p) of (5.10b) as

Pn(p) =%f £i(p) M Pw(s)ds, (5.21)

where we have used (5.12a) and the fact that the integrand is
an even function of s.
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We consider two cases.

(a) p fixed, independent of N: Since N» 1, the exponen-
tial in (5.21) varies rapidly with s, while the other factors
vary relatively smoothly. The integral is done in Appendix D
by the saddle-point approximation.

The saddle s, is real and close to the origin (s,~ 1/N)
and the resulting py (p) is

Pa(p) = <ﬁ)>”(;'<<f°>> l) o),

where g is defined, in an expansion of f; (p) around s = 0, as

Li(p) =fo(p) +8(p)s* + (5.23)

Of course, (5.22) is not valid for arbitrarily large p:
P~ (p) eventually decays below the value given by (5.22)—
in order that p,, (p) be normalizable [see also Eq. (5.9b) ] —
and becomes wider and wider, thus approaching (5.22), as
N increases. It is thus clear why, for all p, p (p) of (5.22)
tends to zero as N— o (notice that f,<1, from Fig. 1). The
decrease to zero of (5.22) is exponential in V. However, if we
normalize py (p) to its value at the origin, we obtain a func-
tion g (p) that in any fixed interval Ap becomes as close to
Jfo(p) as we please by taking N large enough; i.e.,

(5.22)

an(P)=px(p)/pN(0) oy Solp) . (5.24)

The reason for this behavior is that for N3 1 only a small
region around the saddle s, contributes effectively to the in-
tegral (5.21); since |s,| €1, f,(p) gives the dominant contri-
bution. Now we do not obtain a constant for g (p) as in the
case of T, (Sec. IV) because, as we noted right after Eq.
(5.2), the one-dimensional representation that assigns 1 to
every group element does not enter in the harmonic expan-
sion. What is common to the cases of T, and SU(1,1) is that
it is the “smoothest” of the functions forming the complete
set that dominates the behavior of g, in a fixed region, in the
limit N> .

Again, we can gain more insight by describing the above
situation in terms of convolutions.

The convolution of two functions f(R) and g(R) de-
fined on SU(1,1) is given by

h(R)Eff(Rl)g(R T 'R)du(R,)=f*g, (5.25)
just as in (3.14) for R(3). If the functions involved only
depend on p, the explicit expression for the convolution is
givenin Eq. (C39). In the present case, suppose that we have
convoluted p,(p) with itself N times, giving py (p). If we
convolute once more we have

Pn+1(p) =p(p)eoN(p) . (5.26)

Using the definition of gy (p) given in (5.24) we can
write

[Pv+1(0)/PNn(0)1qn 41 (p) =pi(P)*an(p) . (5.27)

Assuming that, as N — o, the following limits exist:

Allim an(p) =q(p), (5.28)
gim [Pv+1(0)/py(0)] =K (5.29)
P. A. Meilo 2882



g(p) must satisfy the integral equation

Kq(p) =pi(p)*q(p) . (5.30)
If K were equal to 1, g(p) =1 would be a solution of Eq.
(5.30), as can be seen from the convolution expression
(C39). We know a posteriori, from (5.22), the value of X,
ie.,

K={(f):, (5.31)

and since 0 < f,(p)<1 for all p>0 (see Fig. 1), 0<K < 1.
Therefore, g(p) =1 is not a solution of Eq. (5.30).

Result (5.31) for K, as well as the actual form of g(p),
can actually be found just by assuming that the limit (5.28)
is independent'? of p, (p). Using the “convolution theorem”
of Eq. (C42), we can write (5.30) as

K{f)=(Nh{f), (5.32a)
where
(f) =f f.(p)a(p)dp, (5.32b)
0
(foh =J:fs(p)p1(p)dp. (5.32¢)

An argument similar to the one below Eq. (4.14) shows
that (f,) must be of the form

(f,) =qw™ 1 (5)0(s —50) , (5.33)
where the factor in front of the § function was introduced for

convenience. Multiplying (5.32a) by w(s)dsand integrating
over s in a small region around s, we then have

K= | (534)
We can now calculate g(p) knowing the coefficients
(5.33) in an expansion in terms of f, (p), as

q(p) =f L@ frw(s)ds=gqof, (p) . (5.35)
0

From Fig. 1 we see that the only f; (o) that is positive
forallpis fy(p). Therefore, from (5.34) and (5.35) we have

K=(f):, (5.36)

q(p) = folp), (5.37)
just as in (5.31) and (5.24), respectively.

We would now like to verify in a simple example that
(5.36) and (5.37) are indeed solutions of (5.30). Suppose
we take p,(p) = 8(p — a). This is not a trivial case at all, as
it would be for the normal CLT, because now we still have
the angles y, v, in which p,(p)du(R) is isotropic. Indeed,
the repeated convolution of p, with itself [Eq. (C39)] is a
nontrivial operation. Let us substitute, in Eq. (5.30),
p1(p) =8(p —a), q(p) =Lfo(p), K = fy(a), making use of
(C39). We obtain

fo(@fo(p) =% folp+a+2ap

—2Ja(a+1) Jp(p + 1) cos 2u)du ,
(5.38)
which, from (C45), is indeed an identity.
(b) 1<in p~ N: In the integral (5.21) we shall émploy
the asymptotic form (for p3 1) of f,(p) given in (C19b)
and (C19c) that we reproduce here
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£,(0) =2Rel[g(s)e*™/fp], p-ow, (5.39)
where
g(s) =T (2is)/[T'(4 + is) 1%. (5.39b)

Again, w(s) is given by (5.11). Since In p ~ N, the integrand
in (5.21) oscillates rapidly as a function of s, so that we shall
do the integral by the saddle-point approximation. The de-
tails are shown in Appendix E. Here we reproduce only a few
salient features. '

Since we want In p ~ N> 1, we write

z=aN+x, (5.40)

where z is related to p as in (C13), a is fixed and x € N.
From (5.21) and (5.39) we can write the probability
density of x as

gn(x) =%e“”"+"”2 ReJm e ds, (5.41)

The exponent @ (s) in (5.41) is defined as

w(s) = 8(s) +is(aN + x) + Ny, (s) , (5.42)
where

& =T'(1 +is)tanh 7s/ [T (4 + is)i ] (5.43)

and #,(s) is given in (5.12a).
The saddle point s, is given by the solution to the equa-
tion

@' (s,) =0, (5.44a)
or

¥1(s0) = —ia— (8'(sp) +ix)/N. (5.44b)

Equation (5.44b) can be solved iteratively starting from
the approximate solution s, defined as

Yi(s,)= —ia.

A few iterations are shown in Eq. (E1).

In the complex s plane one deforms the path of integra-
tion, which is along the real s axis in Eq. (5.41), in order to
pass through the saddle. It is easy to show that e*® of (5.43)
is an entire function of 5. We also assume that p,(p) is such
that the resulting ¢,(s) of Eq. (5.12a) is analytic in the re-
gion enclosed between the two paths of integration. We shall
see later on examples in which this assumption holds. We
can write (5.41) as
ay (x) = % elaN+x)72 Re(em(so) [2,”./( —o" (So))] 1/2) ,

(5.46)
which takes the form given in Eq. (E7), once we substitute
the values of w(s,) and @" (s,). The choice

S, =i/2 48 (s,) /NP (s,) (5.47)

eliminates the term linear in x in the exponent of (E7), so
that the result is a zero-centered Gaussian distribution for x.
For the variable z [Eq. (5.40) ], we thus get the probability
density

qan(2) =e“‘—°N)’/sz/W’

a Gaussian, regardless of the shape of the original distribu-
tion p, (p). The quantities @ and b in (5.48) are given by

a=I{ (—aiﬁl (S)) ,
Os Js—in

(5.45)

(5.48)

(5.49)
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b= — (‘fﬂl) . (5.50)
s=i/2

os?

In Appendix F it is proved that ¢ (s, ) is real and nega-
tive. In that appendix, ¢ (s,) and ¢} (s, ) are evaluated ex-
plicitly in terms of the distribution p,(p) [Egs. (F18) and
(F19) ], with the result

a=<ln(1+P)>1=<z>1, (5.51)
b=2<fﬂif—é’-'ldp') —(n(1+p)) . (552)
) P 1

Equation (5.51) is a particular case of (5.20a).
From (5.48) we find that the probability density of the
variable p is given by
PN(P) = (e—a’N/Zb/zm ) p(a/2b— Dg— In? p/8bN .
(5.53)

B. The limiting form of p,(p) when p Is rescaled and
N

In the above subsection, p;(p) was kept fixed and an
approximate, asymptotic form of p, (o) was found for N3 1.
In what follows we rescale the variable p occurring in

Pi(p) as

p=p/N, (5.54)
keeping the distribution for o’ independent of N. In particu-
lar, we define the centroid of the latter distribution as

(p'h:i=1. (5.55)

Using the series expansion (5.8) we can express the
(f.)Yof (5.12) as

)

Sn=1-(F+5)5

e

In the limit N - o, the quantity {( f,)y = (f,)¥ occur-
_ ring in (5.10b) then takes the form

R

(5.56)

(5.57)
The resulting probability density of (5.10b) is then

pi(p) = Iwﬂ (ple~ &+ Dly(s) ds.
0

The present limit thus gives a universal form, valid for
all p. The original distribution p, enters only through the
quantity / of (5.55): p, (p) is insensitive to other characteris-
tics of p,.

In the language of Eqs. (5.13)—(5.20) we can write for
#,(g), in the present case

(5.58)

¢z(q) = ——lq, (5.59)
corresponding to the cumulants

K= —1, (5.60a)

£, =0, n>1, (5.60b)

or, more explicitly, from (5.16) and (5.19) [see also
(C13b) ],

2884 J. Math. Phys., Vol. 27, No. 12, December 1986

(2 =(n(l+p)),=(—InT), =1, (5.61a)
2 U‘“ In(1 -’HJ') dp,>

0 P !

—2(In(1 4+p)}, — (In(1 4+ p)); =0, (5.61b)

where { ), indicates an average with the probability density
D (p) of Eq. (5.58). In the present case we thus investigate
the mathematical limit in which the number of scatterers
grows and at the same time each one becomes weaker, so that
the resulting ( —InT) =2L /L, has the fixed value /,
which is now arbitrary, i.e., 0</ < .

One can find an asymptotic expression for the p, (p) of
(5.58) valid for /> 1 and 1 €In p ~/, using the saddle-point
method, just as in the previous subsection. In terms of the
variable z we get the probability density

q,(z) =e~ =DV [4qT (5.62)
so that .

(z), =1, (5.63)

(varz), =21. (5.64)

Equation (5.63) is just a particular case of the relation
(5.61a), which is valid for all /.

Since the function f, (p) satisfies the differential equa-
tion (5.7b), one can easily see that the probability density
(5.58) satisfies the “diffusionlike” equation

dp(p) 4 [ apz(p)]
= —— 1 .
a g PP S,

The initial condition p,(p) is determined by the integral
representation (5.58) as

Polp) = fwf, (plw(s)ds .
0

Equation (5.66) is the expansion of p,(p) in terms of the
complete set f; (p), the expansion coefficients being 1. But
this means that

f Po(p) fi(p)dp=1.
(]

We know that p,(p) =8(p) [i.e., the “one-sided” &
function, such that {76(p)dp = 1] satisfies (5.67). From
the uniqueness of the expansion we thus have

Po(p) =6(p) . (5.68)

As ] increases from zero, p; (p) then “diffuses” accord-
ing to the differential equation (5.65). We notice the very
interesting fact that (5.65) is the same differential equation
found in Ref. 15, when the potential felt by the electron is
related to a Gaussian random process.

From (5.65) we can easily find the form of the solution
forl<€1,i.e., whenp, (p) is still concentrated nearp = 0. We
can then approximate(5.65) as

(5.65)

(5.66)

(5.67)

% _ 0 % (5.69)
al dp’ I

We can easily check that

pip) = (1/Dhe=?" (5.70)

is the solution of (5.69) that tends to 8(p) as /-0; it is
therefore the approximate form of p; (p) for /<€1.
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If we integrate over p both sides of (5.65) we obtain

d [~ [ ap =
L do=1p(1 =| =o,
dlfo pi(pdp = | p(1+p) 2 ko

so that the normalization of p, (p) is conserved as / increases.

Just as in Ref. 15, we can multiply Eq. (5.65) by p" and
integrate over p, to find a recursion relation for the moments
{ p™;. In particular one finds

(p) =4 1), (5.72)
(%) = 4(2 — 66* + 4) . (5.73)
Equation (5.72) is the well-known exponential increase of
the average resistance with the length of the conductor, and

Eq. (5.73)' indicates that the width of the distribution in-
creases with length more rapidly than the mean.>'?

(5.71)

VI. SUMMARY AND CONCLUSIONS

We have analyzed the problem of finding the statistical
distribution dPy(R) =py(R)du(R) of the product
R =R\R, - -+ R, of N statistically independent elements R,
ofagroup. The R, (i = 1,...,N) were assumed to be distribut-
ed according to the same differential probability dP,(R;)

= p,(R;)du(R;). Here du(R) is the invariant or Haar’s
measure of the group in question.

For the compact groups R(2) and R(3) we have been
able to show that py, (R) — 1 as N— 0, independently of the
original p; (R;). We made it plausible that a similar behavior
is to be expected for other compact groups, at least the uni-
tary and the orthogonal ones.

In connection with noncompact groups, the translation
group in one dimension (T;) gives rise to the usual central-
limit theorem. The only nontrivial noncompact group that
was analyzed is SU(1,1), which is relevant to the physics of
disordered conductors, as was mentioned in the Introduc-
tion. We have been able to study in detail the case in which
the initial probability density p,(R,) is isotropic, i.e., inde-
pendent of the phases u,v of Eq. (Cl10), ie,
p1(R;) =p,(p,;). It was shown that the resulting py (R) is
also isotropic, i.e., py (R) = py (p), and is given by the exact
expression (5.10b). Two limits were studied.

(1) py(p) is kept fixed and N3 1. In this case one has
L /L_> 1, where L is the length of the conductor and L, the
localization length. For p fixed, py (p) is given by (5.22),
while for In p ~ N we obtain a Gaussian distribution in the
variable In p [see Eq. (5.48)].

(2) The variable p, occurring in p,(p,) is rescaled ac-
cording to (5.54) and the limit N— « is taken, keeping
(—InT)=2L/L, =1 fixed. The resulting probability
density p,(p) is given by (5.58), which thus reduces the
problem to quadratures. It is also shown that p, (p) satisfies
the “diffusionlike” equation (5.65) with the initial condition
Do(p) = 8(p). From that equation one proves straightfor-
wardly the exponential increase with / of the average value of
the resistance.

In a paper to be published elsewhere'® we generalize the
limit (2) above to the case in which the distributions of the
various scatterers may be different from one another. That
case turns out to be of interest for the description of random
conductors placed in an external electric field.
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The analysis just described was confined to the isotropic
case, i.e., when p,(R,) =p,(p;). The study of the case of a
general initial probability density p,(R,) would be impor-
tant in order to complete the description of the problem.

We feel that the analysis of SU(1,1) presented in the
present article relies too much upon the specific form of the
unitary irreducible representations, a feature that is not
needed in the study presented in Secs. II and III in connec-
tion with compact groups. One would think that, if the anal-
ysis were not tied up to the specific structure of the D ’s, one
should be able to study the general case in a simpler way.

An interesting question about the general case is
whether one still has “diffusion” in the full group manifold.

The cumulants «, found in Eq. (5.18) for the isotropic
case add under the convolution of independent variables,
just as normal cumulants do. The relation (5.19) between
cumulants and moments is just the standard one; but in Eq.
(5.16) we were able to find an explicit expression up to
#,(p) only: What is the general form of ¢, (0)? What is the
generalization of these concepts for the nonisotropic prob-
lem?

These and other questions (like what happens with oth-
er noncompact groups) have to be left for the future.

APPENDIX A: PROOF OF THE INEQUALITY (2.7)
For any probability density p($) we can write

() = [ emtp($) 22— [[em \p0g7 17087 22

(A1)

We apply Schwartz’s inequality to this last integral, the
two functions considered by the inequality being

f($) =e™ p($) and g(4) =p(#) . (A2)
We have
e < [l p@T 2 [ | pa 22
27 27
=[[ror 2] = (A3)
27
The equality sign holds iff
f($)xg(¢), forallg, (A4)
which can only happen if m = 0. Then
[{(e"™) =1, m=0, (A5a)
[(e€™) <1, m=#£0. (ASb)

APPENDIX B: PROOF OF THE INEQUALITIES (3.7) AND
(3.8)

Let u be an arbitrary normalized (2/ + 1)-dimensional
vector. Calling

w=(D"u, (B1)
we have
uf =f [D'(R)u], p(R)du(R)
=f{[D’(R)u], VPR }P(R) du(R).  (B2)
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We apply Schwartz’s inequality to this last integral, the
two functions considered by the inequality being

S(R) = [D'(R)u]; yp(R) and g(R) =p(R) .
We have

Iu:|’<f| [D'(R)u},|’P(R)du(R) fp(R)dp(R)

(B3)

=f |[[D'(R)u],|’p(R)du(R), (B4)

where we have used the normalization of p. Summing over /
both sides of (B4) and using the unitarity of D and the fact
that the vector u is normalized, and p(r) is normalized, too,
we have

wtu'=3 |’

< [ Sip @l p@RauR)

=f2 |u,)*p(R)du(R) =fp(R)du(R) =1.
(B5)
The equality sign in Schwartz inequality occurs iff

f(R)xg(R), forallR, (B6)
which can only occur for / = 0. Then

(D% =1,
uti(DHYYDNYu<l, 1#£0,

for all normalized u. This proves (3.7).
We can further write

(B7a)
(B7b)

u'[(D")]N(D')?u
- [__“__ (DYDY —* ] utu.

\/u"u' \/u"u’

(B8)

If! #0, we apply (B7b) to the bracket in (B8), to obtain
W [(DY 1D u<ut(D"YD ' Yu, (B9)
which is (3.8).
APPENDIX C: REVIEW OF THE GROUP SU(1,1)

We give here an outline of the properties of the group
SU(1,1) that are needed in the text.

1. Definition

The group SU(1,1) consists of the collection of all 2 X 2
matrices R that are pseudounitary and unimodular, i.e.,

1 0 (1 0 )
t = =1.
R (0 I)R 0 E detR=1 (ChH

Now R can be written as

a B
R = (B* a‘) ’ (Cza)
with
le*— B2 =1. (C2b)
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2. Classification of the unitary irreducible
representations

The unitary irreducible representations of SU(1,1)
were studied by Bargmann,? with the following main results.
We call k£ the index and m the row of the representation .
Bargmann also introduces the real Casimir operator eigen-
value

g=k(1—k). (C3)
One has the following classes: (I) continuous class,
(1) integral case (C9):
O<q< °°sm=09 j: 1,i2’--~’ (C4)
(a) exceptional interval:
0<k<}, ie, 0<g<}, (C5a)
(b) principal interval:
[k=141is,0<s < 0, i, g>]; (C5b)
(2) half-integral case (C }/?):
[k=1+4+i5,0<5< ,i€,g>1]; (C6)
(II) discrete class,
(1) maximal m(D [ ): k=1, [1,;,2,...] .
m= —k, —(k+1),..,
cn
(2) minimal m(D): k=4, [1,}2,..] »
m=k,k+1,...
(C8)

For k = 0 one has the one-dimensional unitary repre-
sentation that associates 1 to every group element.

The unitary irreducible representations that form a
complete set have been enclosed in square brackets in the
above scheme. Notice that, in particular, the trivial one-di-
mensional unitary representation is not a member of the
complete set.

3. Spectral analysis

The idea of spectral analysis that was used for compact
groups in Secs. I and III and for the translation group in the
Introduction can be extended to the group SU(1,1) as well.
A function f(R) defined on the group can be spectral-ana-
lyzed as

fR)=3
Dt k=13r2,.

afnm’D :‘nm’ (R)

+ 3 3 [(a.piarw e, (C9)
%172 mm' JO

whereak, ., a:,,. are the expansion coefficients and the sum

and the integral run over those unitary irreducible represen-

tations D * and C%"?, respectively, that form a complete

set.

4. Parametrizations of SU(1,1)

In the analysis presented in the text we make use of the
specific parametrization of SU(1,1) given in terms of the
“Euler angles” (u,¢,v) introduced by Bargmann.? In terms
of them, every group element R can be written as
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(e‘ u 0) (cosh ¢ sinh §) (e‘ i 0) In (C17), ,F, denotes the usual hypergeometric func-

"\ 0 % \sinh¢ cosh¢ 0o e/’ tion and
(C10)
where the range of the parameters is specified by Omm =1,
K<, —m<UYV<LT. (C11) 6. (k)= 1

. . s . m—n !
The invariant measure is given by | |

. |m — n|
du(R) = (2m)"*sinh 2§ df du dv . (C12) X [I k(1=K + (r+i)(n+j—1)]"2
Since the group is noncompact, du (R) is not normalizable. /=1
It is also advantageous to introduce the variables . [1, m>n, (C18a)
p=sinh*¢, (C13a) (=)""" m<n. (C18b)

z=In(1+p)=—InT. (C13b) The asymptotic form (for £3 1,i.e.,p> 1) of (C17) can
In the physical applications to disordered conductors  be shown to be

that we mentioned in the Introduction, T'is the transmission

coefficient of the sample and p is related to its resistance by> g % w (p) ~Re[C,, (k)p~* ] ~Re[4C,,, (k)e~ 1,

resistance = (7#i/e*) p . (C14) (C19a)
Then p is called the “dimensionless resistance.” It is really

the natural variable of the problem, because in terms of it the ~ Where ,Cmn (k) is a constant. In particular, for k =} + i,
invariant measure can be written as m=m’' =0, we have

du(R) = (2m) " dp du dv . (1) a4l +5p) =£, () ~e()e* ™ Np +cc.,  (CI9b)

5. Explicit form of the unitary irreducible h
representations where

The explicit form of the unitary irreducible representa- g(s) =T (2is)/[T(} +is)]*. (C19¢)
tions of SU(1,1) has also been given in Ref. 3, They can be

written in a way that resembles those of SU(2). Using the  In (C19b) we have used the definition (5.7) of £, (p).
parameters p,u,v, they take the form

Di (pv) = e~ md L (p)e ™2™, C16 _
where o) ® (€16 6. Orthogonality of the D},
d* (o) =6 . |m — m|/2 m 4+ m|/2 We observe from (C19) that the representations that
s ) = O () [ /(1+p) ] form a complete set [those that were enclosed in square
X Pk + (|lm —m'| — |m +m'|)/2, brackets in (C4)-(C8) ] are square integrable with the mea-

sure (C12) or (C15). One can show that the usual orthogon-

1—k —m'| - /2
+ (Im—m'| = |m +m'])/2; ality relation holds for them, either in terms of Kronecker or

1+ |m—m'|;—p). (Cl7)l Dirac delta functions, i.e.,
7 ‘cS,‘,‘.i)‘mlmi a3 ? if k,k'eD *, (C20a)
. . ’ § .y 0
Dfn.m (R)Dk" ,(R)d‘u'(R)= -1 ¢ [lfk:i-*—ls,k =i+lsEC,
f o e WSS =50 miOmms or k= }+isk’ =} +iseC?, (C209)
0, if k,k ‘e different classes . (C20c)
In (C20) fi f the index of th '
n ( s Wy, w(s) are functions of the index of the repre- ® . !
sentation, o, ["ar@p@@sinn2ga

w,=2k—1, keD*, k>}, (C21a)
w(s) =2stanh s, keC®, k=}+is, (C21b)
w(s) =2scothns, keC'?, k=4+is. (C2lc)  Where

For the discrete classes D * and k> }, Eq. (C21a) is B U =J¢"’2"(s)d © (£) ds (C23)
taken directly from Eq. (12.9) of Ref. 3. m m

For the continuous classes C 3'/>and k = § + is, we pro-

=27 r ()Y ()Y@ (s) ds, (C22)
0

ceed as follows. From (C16) we immediately obtain ortho- and
gonality when m#m'’ and n#n’. Whenm =m’, n = n', we c(s) = {(OOth ws)/4nws, for C°, (C24)
use Eq. (12.25) of Ref. 3: (tanh #s)/4ws, for CV/2. (C25)
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In (C23), the ¥"?(s) construct wave packets out of the
d . The additional factor w,, (s) of Eq. (12.18) of Ref. 3
was omitted, since it drops out in the analysis due to the fact
that |@,, (s)| = 1.

We now choose

P(s) =8(s—5)), ()
and thus obtain from (C22)

=8(s —s,) (C26)

fw d$07(8)d &) (&)sinh 28 dE = 2me(s,)8(s; — s,) .

o
(C27)

From (C16) and (C27) we then obtain (C20b), with
(C21b) and (C2lc).

Using the orthogonality relations (C20) we can find the
coefficients of the expansion (C9) as

B = W, ff(R)[Dﬁm'(R)]*dy(R), (C28a)
@ = W(s) ff(R)[D WEYE(R)]* du(R) . (C28b)

7. The composition law
Consider two elements R,R, of SU(1,1),

R, (u,6v1) » R, (10,80v2) (C29)
and their product R,
R1R2 =R(ﬂ!§)v) . (C30)

From the representation (C10) we see that in the mid-
dle of the product R R,, the angles v, and u, combine as
v, + i, The resulting § depends thus on &, &, and v, + u,
only:
cosh? ¢ = cosh? £, cosh® £, + sinh? £, sinh? £, + 2 sinh §,

X sinh §; cosh &, - cosh &, cos[2(v, +u,)] .

(C31)
The resulting v,u are
p=p+ @—9)2, v=v,+ W +¢)/2, (C32)
where 1 and ¢ are given by
cosh($, — &)
t = t , (€33
an cosh £ cosh(Z, 4 &) an(v; +4,), (C33)
tan ¢ = sinh (¢, — ¢3) tan(v, +u,) . (C34)

sinh ¢ sinh(&, + &)
In terms of the variable p of Eq. (C13) we can also write
(C31) as

p=p1+p2+200: +2[pi (1 +p)p(14+p)]"?
X cos[2(v; +u,)] . (C35)

8. The inverse A

From the representation (C10) we immediately see
that, if we call (u,£,v) the parameters of R and (u',{',v')
those of R ~!, we have the relations

L'=¢, V= —p+7/2.
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#’:—V—ﬂ/z, (C36)

2888

9. The convolution

Just as in (3.14) for R(3), we define the convolution
h(R) of two functions f(R), g(R) defined on R as

h(R)Eff(Rl)g(R SRR =g .

In the text we are especially interested in the case where
Jf and g are probability densities p, (p,), p,(p,), respective-
ly, that do not depend on the angles. Using (C37), (C36),
(C35), and (C15) we can write the resulting convolution

(u,psv) as

d
plp,pv) = f dplf ff,_’ )2 P

(C37)

(P20 +p + 200

—2[p,(1 +P1)P(1 +P)]1/2 cos 2(u —py)) .
(C38)
Integrating over v, and shifting the variable p, to
4 — 14, we thus find that the resulting p is given by

T

p(p)=f dp, p1(p1)
(1] -—r 2

—2[p;(1 +p)p(1 +p) 1'% cos 2u,)=p,*p,
(C39)

and is independent of the angles u,v. Therefore, the convolu-

tion of two isotropic functions is again isotropic. This result

was also shown in the text in connection with Egs. (5.6).
Equation (C39) generalizes to SU(1,1) and for isotrop-

ic functions, the usual expression for the convolution.
Equation (C37) implies

2L p,(p+p1 + 200

<Dk>h=<Dk>f(Dk>g’ (C40)
where
D*), = [ fROD R R) (C41)

and similarly for (D *),, (D*),.
For the isotropic functions p,p,,p,, of Eq. (C39), the
argument below (5.5) then shows that

(fy= (N2 (C42)
Equations (C40) and (C42) are the equivalent, for
SU(1,1), of the familiar convolution theorem.

10. A relation among 7, (p)’s from the representation
property

From the definition of a representation we have the rela-
tion

S DY2+E(R)D Y2 4(R,) =D 2 “(R\R,) .

mm,

(C43)

We use (C16), set m =m’' =0, and use (5.7a) and
(C35),

D [dom* “(p)e~ ™" ] e~ Hmibiad 0 (p2) ]

m,

=£(p1+p2+ 202+ 2[p1 (1 +p)pa(1 + p) 12
X cos 2(v; + i1,)) . (C44)
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We now integrate over v, and g, and making use of
(5.7a) again we get

[ (P (p2)
=J‘ Silpr+p2+ 20,02

d
+2[p, (1 +p)p2(1 +p2) 112 cos 2v1)2l1;.
(C45)

APPENDIX D: PROOF OF EQ. (5.22)

Sincebothf; (p) and w(s) in (5.21) vary slowly, one can
look for the saddle s, defined by (d¢,/3s),_ ,, = 0; but, since
¥ = ¥(s*), we have s, = 0 and w(s,) = 0. It is thus better,
before finding the saddle, to write w(s) as

w(s) = 2s tanh 75 = — (@™ +e"r™_2) (D1)
sinh 27s
and evaluate the auxiliary integral
T =%J-_wfs(p) sinlfz‘trs ennords, (D2)
in terms of which py, (p) is given by
pnp)=0L,+1_,, —2I,. (D3)

The saddle s, of the integrand in (D2) is now the solu-
tion to the equation

From (5.12a) we have
Vi (s) =F{(s)/F\(s), (D5)
and, using the expansion (5.23), we can write (D4) as

2ghsot B (D6)
(fohi+ - N
Since B /N <1, we see that an approximate solution to

(D6) is

_ B {fohs
N 2(gy), '

which is real and very close to the origin (|s,| €1). The sad-
dle-point approximation to I, is thus

1

~

0~

(D7)

S0 o850+ Nuy(so) 27 . (D8)
sinh 275, N |97 (s0) |

We now expand (D8) in powers of s, Recalling that

¥,(s) is a function of s and hence ¢'(0)
=¢"(0) = -+ =0, we have, to first order in s,

1 1 27
Io=—fo(p)—(1 + Bsy + )M O———— . (D9)
syl o N9 0)]

Substituting (D9) in (D3) we obtain the result (5.22)
of the text.

APPENDIX E: PROOF OF EQ. (5.48)
Weevaluate g, (x) of Eq. (5.41). The saddle point is the

¥i(sy) = —B/N. (D4)l solution to (5.44), which can be integrated to give
ix + &'(s, ix +8(s,)16"(s,) — [¥7(s,) /247 (s,) ) [ix + 8'(s,)]?
5 sa=_tx+” (s.) | [ (5,)]6"(s,) [2'/&'(' 12&1 1 (s.)] 4o (E1)
Ny“(s,) N*[¢7(sa)]
We now expand w(s,) around s, and keep terms up to ® (/D0 ) 5 — 307" g 27 172 (E6)
the order 1/N. We then expand 8(s,) as . Tl =Nyl

8(so) = 6(s,) + (5o —5,)8'(s,) + - (E2)

On the other hand, in the expansion of ¥, (s,) we keep
one more term, because in (5.42) ¥, (s) is multiplied by the
factor N, i.e.,

Y(so) = ¥(s,) + (50— 8:) 91 (s,)

+ (172 (50 — $)*¥" () + =+ - (E3)

Substituting (E1) in (E2) and (E3), and these in
(5.42), we obtain

x2 . . 5,(sa) ] .
=" 4 |is, —i ———| x4+ is,aN
000 = ) ['s MG
’ 2
—M+5(Sa) + Npy(s,) - (E4)
2NY(s.)

We also need »” (s,), which determines the variance of
the Gaussian in the saddle-point integral. Only the leading
term is needed, i.c.,

" (so) =Ny7(s,) + O(N°) + O(N V). (ES5)

Now @” (s,) can be shown to be real and negative (see Ap-
pendix F), thus giving
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For the g, (x) of (5.41) we thus have

1 2 172
= —Re|—=7
W=7 e[——Nw"(s,,)]

X ekp[5(sa) + (is‘z + %) aN + Ny, (s,)

2 &
+—= 4 [isa PECACY +l] x}'.
2Ny (s,) Nypi(s) 2
(E7)
This result is valid for an arbitrary choice of g in Eq.
(5.40). We now restrict ourselves to the case in which a is
such that z = aN is the centroid of the distribution (E7).

This is achieved when the coefficient in front of x in (E7)
vanishes, thus giving

5, =i/2+68(s,)/[NY"(s,)] - (E8)
We then have

(1 +is,) =7, (E9)
(3 +is, ) =Nyi(s,)/[i6'(s,) ] » (E10)
tanh 7s, = Ny7 (s, )/ [76'(s,) ] , (E11)

which, substituted in (5.43) for °°*, gives
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E /. (E12)
One also finds
’ 51
N¢,(s,)zM. (E13)
v (s,)

Substituting (E8), (E12), and (E13) in (E7), and us-
ing (5.40) one finally finds the result (5.48) of the text.
Equation (5.49) follows from (5.45), with s, ~i/2 [Eq.
(E8)].

APPENDIX F: EVALUATION OF THE PARAMETERS OF
THE GAUSSIAN DISTRIBUTION (5.48)

We notice that the quantities in (5.49) and (5.50) are
evaluated at s =i/2, i.e., at k =0 according to (C5b) or
g =s*+1=0 [see Eq. (C3)]. Since f,(p) of Eq. (5.8) isa
function of 5%, it is natural to express £, (p) and F,(s), ¥,(s)
of (5.12a) as functions of g, which we shall designate with
the same symbols, i.e., f, (p), Fi(q), ¥,(q).

We first write the series (5.8) for f, (p) in terms of g as

Le=1+3 (ol [q+mcm—1>1]

n=1 ma=1

2’
(F1)

It is of great interest to reexpress (F1) as a power series
ing,i.e.,

ﬁ,(p)=ngo¢n(p>%-

We have been able to evaluate ¢, (p) for n = 0,1,2 only.
This is all we need for our purposes, although it would be
interesting to know the ¢, (p) for arbitrary n.

We first have

dolp) =1. (F3)

Differentiating (F1) with respect to ¢ one obtains a se-
ries that can be summed to give

af,(p)
$:(p) =<ip—) = —In(1+p).
aq g=0
Differentiating (F1) twice one obtains the series
3%, (p)
()
¢2 (p a q2 g=0

(F2)

(F4)

1 _p
=2 )" . F5
z (=) mzzm(m—l) n (F)
One can easily show that
“ 1 n—1
= , Fé6
,nz,:zm(m——l) n (F&)
so that
$0)=23 (—)"”——2 s (—)””— (FT)
n=1 n=1
Define
gp)=23 (—)"” (F8)
n=1
hpy=2 3 (—)"’iz (F9)

n=1
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Concerning g(p), we see that
gp) = —2In(1+p). (F10)

We have not succeeded in expressing ¢,(p) in terms of
known functions. We first notice that

h (p)=— S (== —Zma4p), (FID
na==1 n P
so that
hip) = _2f’m—“¢ﬂdp', (F12)
b p
and thus
¢2(p)=—21n(1+p)+2fﬁl-p—fﬁ'—)dp'. (F13)
0

Results (F3), (F4), and (F13) are the ones quoted in
Eq. (5.16) of the text.
Averaging f, (p) with p,(p) we now have

F@ = e0= 3 @i, (F14)
n=0
where
(¢0(P))1 =F1(q =0)=1, (F15a)
(6:(0))=Fij(g=0)= — (In(1 +p)),, (F15b)

($:(0)), =F7(g=0)

2( [ RALE) 4y) —20m1 +p2)s,
o P 1
(F15¢)

where the primes indicate derivatives with respect to g.
The derivatives of ¢, (s) with respect to s that appear in

(5.49) and (5.50) [remember that ¢,(s) = In F;(s)] can

now be expressed in terms of derivatives with respect to ¢ as

¥ (s) =2sFi(q)/F\(q), (F16)
Fi(q)
v(s) = (49 ~1)
¥ 4 Fi(@)
Fi(q) [F @7
+2 — (49 — , (F17
Fi @) (49-1) (F17)
so that, using (F15), we have
Yi(s=i/2) = —i{In(1 +p)),, (F18)
rs=i/2) = —2 (fﬂl—’f&dp’)
o P 1
+ (In(1+p))7 .
(F19)

Substituting the last two equations in Eqs. (5.49) and
(5.50) we obtain (5.51) and (5.52).

From (F19) we see that ¢/} (s = i/2) isreal. We can also
show that it is negative. Since

(In(1 +p))i<([In(1 + p)1*),, (F20)
we can write
(s =g)<—2 ([ 22 a)
ls=—
2 1
+ ([In(1 +p)1%),. (F21)
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From

a

9 mr(14p) =280 FD) (F22)
dp

1+p
we have

w1 +p =2 [ UL g,
o l+4p
so that (F19) becomes
(- e(l=esm)
2 0 P 1

*In(1+p") do’
o 1+4p

0 '
= _2<J M@) <0,
o p'(1+p") 1

which proves our assertion.

(F23)

+2

(F24)
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On the DLR equation for the two-dimensional sine~-Gordon model
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The Dobrushin-Lanford-Ruelle equation is studied in a certain space of measures in the case
of two-dimensional trigonometric interactions. The uniqueness theorem extending the results
of Albeverio and Hoegh-Krohn [S. Albeverio and R. Hoegh-Krohn, Commun. Math. Phys.
68, 95 (1979)] is proved. The extension is obtained by the application of some correlation
inequalities of the Ginibre-type, which reduce the proof of the uniqueness of the translationally
invariant, regular, tempered Gibbs states to the question on the independence of the infinite-
volume free energy of the boundary conditions. The required independence is proved in this

paper.

I. INTRODUCTION. NOTATION AND THE RESULT

The statistical mechanics approach to the two-dimen-
sional superrenormalizable Euclidean scalar (quantum)
Euclidean field theory can be formulated in terms of the
fundamental notions of the Gibbs states.'?

Thestandard measurespace{S ‘(R ?),B},whereS (R ?)
stands for the (real part of) Schwartz’s space of the tem-
pered distributions and B for the Borel o algebra of subsets in
S'(R?), plays the role of the configuration space in this ap-
proach. Let uf, be the Gaussian measure with the covar-
iance ( — Al +1)7! and mean equal to zero. Here A]
stands for the two-dimensional Laplace operator with some
classical boundary condition b» imposed on the given
piecewise-C ! curve I'. In particular, we will write u,, for the
measure with the free boundary condition and u{ for the
Gaussian measure g, with the Dirichlet boundary condition
on I'. Let us denote by 2 (A) the local o algebras generated
by the free Gaussian field u, and by m_ (A), the space of
bounded measurable [ with respect to 2(A)] functionals of
the field ¢.

Let {U, (@)} be an additive functional of the free field
such that exp(U, (@))eN,,, L7 (du,). We will say that a
probabilistic, Borel cylindric (PBC) measure p defines a
quantum scalar field with the interaction {U, } iff (i) u is
locally absolutely continuous with respect to i, i.e.,

Hixcay €hoizays
(ii) for any Fem _ (A) the conditional expectation values of
F with respect to the measure u and the local o algebra
2(A%), E,{F|2(A")}, is equal to those computed with re-
spect to the measure i1, and the o algebra X (A°), where u,
is a measure

b (de) = (Z,) 7" exp(U, (@) Jo(dp); (L.1)
and (iii) the moments of the measure u exist and obey stan-
dard requirements of the Euclidean field theory (such as
Glimm-Jaffe axioms,’ etc.). It is important to note that the
family E, { — [Z(A°)} defines on the {S'(R ?),B} a local
specification in the standard sense.' In Refs. 4-6 it was
proved that

) On leave of absence from the Institute of Theoretical Physics, University
of Wroclaw, Poland.
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E, {—e"?|3(A%}
E, {e"?|2(A%}
The conditional expectation values E, { — |Z(A°)}(7) at

the randomly chosen point 7€S ‘(R ?) can be written as the
solution of the following Dirichlet stochastic problem*:

(—A+ 1WA (x) =0, xeA —JA,

VoA (x) = n(x), xedA.
For a recent, deep discussion of such kinds of stochastic
problems, see the paper by Benfatto et al.’> Here, we recall
some basic facts concerning the problem (1.3).

For a given additive functional {U, } let us denote by
%'(U, ) thespaceof all tempered [i.e., supportedon.S’' (R 2)
PBC measures] such that

E, {-|2(A9} = (1.2)

(1.3)

V uCE, {—|2(A} =g,

|A| < o0
in the meaning of measures we shall call elements of the set
Z'(U,), the tempered Gibbs measures corresponding to
the interaction {U, }.

It is not hard to observe that the set ¥‘(U, ) is convex
and weakly closed. From the results of Félmer’ and the re-
cent, more general results of Winkler® and Weizsiicker and
Winkler® it follows that the set *( U, ) has a structure simi-
lar to that of the Choquet simplex: every ue%*(U, ) may be
uniquely represented as a resultant of some probabilistic
measure p supported on the set 3% (U, ) of extremal points
of ¥'(U, ), which exist by the Félmer—Winkler results.”

A Gibbs measureuc % (U, ) is called the regular Gibbs
measure iff its two-point moment can be extended continu-
ously to the Sobolev space #”_, (R 2), i.e., there exists a con-
stant ¢ such that

v f o2 (ouldp)<el| FI™ ;.

feH_(R?)

(1.4)

(1.5)

A Gibbs measure u€¥ (U, ) is called the completely regu-
lar Gibbs measure iff there exists a constarit C such that

et V(R’) J e*u(dp) <eCIIflIZ_ 3

We denote the set of regular Gibbs measures (resp. com-
pletely regular Gibbs measures) by ¥;(U,) [resp.
%:,(U,)]. From the definition it follows that ¥, (U, )

(1.6)
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C Y9 (U, )C%"(U,). From Refs. 5 and 6 we know that for
any ue%'(U, ) the stochastic Dirichlet problem (1.3) has
for almost every 7 with respect to u a solution given by the
classical Poisson formula:

Wit (x) = J; PN(x,z)n(2)dz,
. A

valid for x¢dA, where P %*(x,z) is the Poisson kernel for the
operator — A + 1. These unique solutions have certain local
decay properties as ATR ¢ (see Ref. 6 for greater details).

The most important questions in the general theory of
Gibbs states are the questions about the existence and de-
tailed topological structure of the sets like (U, ). The ex-
istence problem for the field-theoretical Gibbs measures has
been treated intensively in the seventies. See Refs. 3 and 10
for references. However, till now there did not exist a satis-
factory version of the Dobrushin-like theory!!'? in the field-
theoretical context. Let us remark that it is not known
whether every ue¥: (U, ) for a given interaction {U, } de-
fines a quantum field theory in the sense of (i)-(iii). By
experience with the lattice spin systems with noncompact
state space of the individual spin,’>'* we expect that there
may exist some spurious solutions of the DLR equations
(1.4) in the space (U, ).

Essentially important is the question about the cardina-
lity of the set ¥F*(U,)NF'(U, ), where we denote by
FG(U,) the set of quantum-field theoretical solutions of
the DLR equations (1.4). Whenever the above-mentioned
set has more than one element, we have to deal with the
phenomena of the first-order phase transition. Deep results
in this direction have been obtained recently by Jmbrie's for
the case of polynomial interactions. A detailed description of
the set (U, ) is, however, a very hard mathematical prob-
lem (it is very nontrivial already on the level of the two-
dimensional Ising model'®!”). The analysis of the set
g:(U,) for a given {U, } seems to be a much easier prob-
lem. In the case of exponential interactions we have proved
in Refs. 18 and 19 that the set ¥7, ({U, }) reduces exactly to
one quantum field theory solution of (1.4). This has been
proved also in Ref. 20 extending the ideas taken from Ref.
18.

In this paper we consider the problem of uniqueness [in
the space ¥, (U, )] of the solutions of the DLR equations
(1.4) for the so-called sine-Gordon interaction. Previously
Albeverio and Hoegh-Krohn, using a high-temperature
cluster expansion, proved the uniqueness for the weakly cou-
pled sine-Gordon interaction.® A similar uniqueness result
has been proved?! for the regularized Yukawa d-dimension-
al, neutral gas in the region of couplings where the contrac-
tion map principle can be applied to the Kirkwood-Salsburg
equations.

The sine-Gordon interactions are defined by

(1.7)

U, (@) =zf d?x:coslep(x) + 6):. (1.8)
A

Here we consider this model in the region

z30, €<2/(1—-1/2m), 6=0.
See papers 22-24 for the construction of the corresponding
Gibbs measures with zeR !, 8 #0, and € < 4.
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The result proved in this paper is the following.

Theorem 1: Whenever the infinite volume pressure
P.. (z) inthe model (1.8) is differentiable at z = z,, the set of
regular solutions which have translationally invariant first
moment of the corresponding DLR equations at z = z, con-
sist of exactly one element equals the infinite-volume half-
Dirichlet state.

The uniqueness result of Albeverio and Hoegh-Krohn
holds only in the region of the convergence of the Glimm~
Jaffe Spencer expansion, i.e., for sufficiently small |z|. Tak-
ing into account that p_ (z) as a concave function of z is
almost everywhere differentiable (presumably for all z), we
have that for almost every z there exists a unique pure Gibbs
phase corresponding to the interaction (1.8).

The proof we find seems to be very elementary. We
adopt to the present case some correlation inequalities found
by Frohlich and Pfister in their analysis of the DLR equa-
tions for Abelian lattice spin systems.”>2” The additional
argument we use for the proof is the independence of the
infinite volume pressure of boundary condition (generaliz-
ing the known result of Guerra-Rosen-Simon®® and con-
cerning the independence of the so-called classical boundary
conditions).

The ideas used in this paper can be applied to analyze
the class of weakly coupled P(gp), models or the :@ *: models
where the Lee~Yang theorem works. Similar techniques
have been applied to the class of charge-symmetric continual
systems.?*°

Finally, let us say a few words about the organization of
this paper. In Sec. II we review some correlation inequalities
of Egs. (1.4) to the statement about independence of the
infinite-volume pressure of the boundary conditions. In Sec.
III we prove the claimed independence. Section IV contains
some techniques necessary to complete the proof of
Theorem 1.

il. REDUCTION OF THE PROOF TO. THE STATEMENT
ABOUT DIFFERENTIABILITY OF THE PRESSURE

The infinite-volume half-Dirichlet sine~-Gordon mea-
sure corresponding to the interactions (1.8) can be con-

structed easily by the following correlation inequalities
proved in Ref. 31:

(e"'P; «cos ep:(x) ) 1 (2) <0, @.1n
(P 2(S); :cos €p:(x)) ] (2)<0, (22)

where (; )7 means the truncated expectation value and
{ )2 (2) means the expectation with respect to the measures

pMdp) = (2% (2))! exp(zf :cos €@:(x)d 2x) uitdy),
A

Z%(2) =f,ug"(d¢»)exp(zf :COS 6¢7:(x)d2x) . (2.3)
-JA

From these inequalities it follows easily that the infinite-vol-
ume limit lim,,z:{(—)% = ( )% exists (independently at
how A 1R ?) and fulfills the axioms of Ref. 32. In particular,
we have the bound

(e@(f))(; <e(‘2/2)||f||"_ 1’ (24)

which means that (—)° =§ — u_ (dp) is a complete regu-
lar Gibbs measure. Let us introduce the following notation:
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c(@)(x) = :cos ep:(x), s(@p) = sin eg:.

By %! (z) wedenote the set of regular Gibbs measures corre-
sponding to the interaction (1.8) with fixed z and €. The

“
symbol V means for almost every 7 with respect to u. A

7
conditioned finite-volume Gibbs measure p} (de) is given
by

pldp)=(Z7)!

Xexp(zf c(@ + ¥ty (x)d 2x) udtde),
A
(2.5)

where W2* is the solution of the problem (1.3) and 7 is ran-
domly chosen from S'(R ?).

From the reverse martingale theorem it follows that, for
agivenued:(2),

47 (dop) = lim u} (dp)
AtR?

exists foru a.e. 7S’ (R 2), and defines some PBC measure on
{S’(R ?),B}. Moreover, the full set ¥*(z) can be obtained as
convex superpositions of such limits.

For the conditioned measures uj the correlation in-
equalities (2.1) and (2.2) in general fail. However, instead
of the correlation inequalities (2.1) and (2.2) one can use
another set of correlation inequalities in order to analyze the
content of the set &(z). These correlation inequalities
proved below are simple adaptations of the correlation in-
equalities proved by Frohlich and Pfister in Ref. 25. They all
are simple applications of the Ginibre correlation inequal-
ities.”® In the shorthand, let us introduce the notation

C, (XpperX,) =f,ui“(chp) II c(@)x)),

i=1
CRGt) = [ wt ) ] ctorn,

'j’ (2.6)
SR Get) = [ ) 1] st 0,

i=1

S (Epposty) = f 3 dg) TJ s(@)(x),

i=1
and similarly for the corresponding infinite volume limits.
The existence of lim,,z: ¢, follows from the :cos eg:
bound? and the following correlation inequalities:

n m T
<H c(@x; 1 8(¢)(y,~)> >0,
F=1 A

i1

2.7)

proved in Ref. 31. The existence of the limits lim,,z: C},
lim,,z: S (by subsequences) follows from the correlation
inequalities to be proved below [see inequality (2.14)] and
the compactness arguments. Moreover, from the results of
Sec. IV it follows that every accumulation point of C7, is
equal to C_ (at least for regular values of z, see below).

Let us denote by (—)7 the expectation on
{S’(R?),B}** with respect to the measure uS*(dp)
eul (dp’).

Proposition 2.1: Let ue¥'((z). Then for every n>0,
Jise-s S, €S(R 2); such that £, >0, for i = 1,...,n, geS(R ?) the
following correlation inequalities hold:
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v o<((f1 @) () — I c(¢>”)(f2-))
i=1

i=1
[OX )

XCXP( +4 fd2x g(x)e(g)(x)e(p ')(x))) ,

A
A€R . (2.8)

Proof: 1t is a standard application of the duplicate vari-
able technique. Let ¢’ be an identical copy of the field ¢.
From

exp(zf d*x c(cp)x)) exp(zf dxc(p' + W) (X))
A A

’ A
== exp(z f d*xc¢ (M)
A

2
! \YIA
X (x)e (f—-‘-’iz—w-’-’—) (x)) (2.9)
and
c(@)(x)e(@p’)(x)
_1 ¢-¢’) (¢+¢')
20( 5 (x)c 5 (x), 2.10)

we conclude, after introducing the orthogonal transforma-
tion in the space {@,¢ '},

Y, =(p+@)WV2 Y_=(—@+@")\/V2, (2.11)

that the first exponential and the one coming from the inter-
action factorize after (convergent for |A| < o« ) expansions
in z. The terms outside the exponentials factorize using the
following trigonometric identities:

n 1 n .
cos @, = — cos( egv), €= +1,
anll ) é jg:a s
(2.12)
and
cos @ — cos B = 2sin[(a + B)/2]sin[ (B — a)/2].
(2.13)
Some intermediate UV regularizations are needed to justify
these transformations rigorously but the removal of it is sim-
ple so that we omit the details here. QED.
These correlation inequalities lead to the following in-
ductive statement on the independence of the moments like
C7 (xy,...,x,,) of the boundary condition 7.
Corollary 2.2: If for f,,..., f, >0 and some 7,
n /] n 0
tim (1T e ()" = (I o200}
1 A i=1 o

AtR? \/H
and

(e(@)(0))S, = (e(@) (%)% >0,
then for any n + 1 we have

7 4

1 7 n 4 1 o
tim (] o))" = (] et ) -

i=1 A i=1

Proof: Expanding the exponential
cxp( +A j dx g(x)c(@) (x)e(@ ) (x)d 2x)

=144 fdx g(x)e(@)(xX)e(@ ) (x) + O(1 ),
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we have, using Proposition 2.1 and the hypothesis,
0=C_ ( fi5es [,) = C7 (frseens [3)

n ]
>t4 fdxg(x) [(]’[ c(¢)(ﬂ)c(¢)(x)>

i=1

n 7
X{e(@)(x))L, — <1'[ c(¢)(ﬂ)c(¢)(x)>
i=1 o

X {c(@) (%)%, ] -
Dividing by A and letting A tend to zero, we get

” 0
0=fdxg(x) [(I] c(¢>)(ﬂ)c(¢p)(x)> (@) ()5,

=1

~(fl corme@ ) <c(¢)(x)>2.,] .
i=1 ©

By the assumed strict positivity of {c(¢) (0))°, [actually it
is easy to prove that {c(¢)(0)), > 1], we conclude

n n V]
(1‘[ c(¢)(f,)c(¢)(g))" = (1‘[ c(rp)(ﬂ)c(g)) :

i=1 i=
From this result we have the following corollary. Q.E.D.
Corollary 2.3: Let ue¥9:(z). If ¢ (0) =c" (x) for
some 7), then for any 7> 1

€ (XpseesXy ) = €7 (X150000X, ).
This corollary reduces the proof of independence of the mo-
ments {C", (x,,...,x, )} of the boundary condition 7 to the
identical statement concerning the first moment only.
Roughly speaking, the first moment is nothing but the deri-
vative of the pressure. Thus, the proof of the independence of
the moments {C”, (x,,....x, )} of the boundary conditions
7€S’ (R ?) has been reduced to the statement on the infinite-
volume pressure independence of boundary condition 7.
This result will be proved in the next section.

Before ending this section let us note also other simple
but remarkable correlation inequalities.

Proposition 2.4: Let ue%'((z). For any choice of
a,€[0,27),i = 1,2,...,n, we have

g’: C_ (X150sXp ) > ‘(ﬁ c(qp+a,)(x,))1, l .
n i=1 o«

(2.14)
J

Proof: This follows easily from the formula

C. (Xpx,) — (fl cp +ai)(x1)>7’

i=1
n n 0,7
= ([I c(@)(x) — I C(¢’+a,-)(x;)> Y (2.15)
i=1 i=1 o

formulas (2.12) and (2.13), and the duplicate variable
trick. Q.E.D.

Recalling the Folmer, Weizsacker, and Winkler results
mentioned in the Introduction we have the following corol-
lary.
Corollary 2.5: The Gibbs measure u_ is an extremal
Gibbs measure in the set Z*(z) (for every z50).

Proof: This is a standard application of the representa-
tion of an integral over the Martin—-Dynkin boundaries
3%'(z) of the set ¥*(z). For convenience, we review some
results from the Folmer, Weizsacker, and Winkler theory in
the Appendix to this paper.

Remark 2.1: For eventual future application we define
also the following moments of the measure u7 (dp):

C0 (XX, ) =E,, [f[ c(@)(x;) E(Ac)] (mn
i=1

= f p3 (d@) T : coslep(x,) + e¥3*(x)):

i=1

(2.16)

and

§7 (X%, ) =E,, [1‘[ s(@) (x,) z(AC)] <)

i=1

=fpx (dg) f[ :sin(ep(x,) + €¥2*(x,)):.
i=1
(2.16")

Then, it is not hard to observe the correlation inequalities
listed above hold also for C7.

Proposition 2.6: Let uc%'(z). Then for every n>0,
Jirs £, €S(R ), such that £; >0, fori = 1,...,n, any geS(R ?),
the following correlation inequalities hold:

Vi ¥ 0<((1T ewrcnr = T oos cep’ +er)
X exp ;tzlfd’xg(x)c(:p)xcos(w’+e\lf‘,’,")(x):)(o'q) (2.17)
and ’
‘(.-ljl :cos(a¢>+e\v'3,"):(f,~)): KCQ S fy)- (2.18)

In particular, this proposition leads to the same bootstrap principle as Corollafy 2.2 for the moments

lim 61 (XppeeesXy ) s?:g,, (Xy50ee9X, ).
AtR2

The existence of ¢7, (x,,...,x, ) follows from the application of the reverse martingale theorem and the correlation inequality
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(2.18). Moreover, from the correlation inequality (2.18) it follows easily that the set of the limits lim, £7 forms then a
weakly precompact set in the space of all probability measures on the space {S'(R ?),B}. The last remark follows easily by

noting the following formula: for any ue%:(z),

E”{eiw(f)lz(AC)}(n) — e""?/\(f) J el'fP(f)‘uZ (d¢) — e""f,A(f)e— a2y £1I1% 1oA

J#K (dcp)eXp(zf fdA(a')dx:e"""““’f'A’(*’:(e —d (=AM DTS 1-))
A

=ei‘l"?,'\(f)e—(l/2)||f||2&1_a,\E~MA [CXPZJ J-dx d/{(a:):eia@(x):(e—a’( — A% 4 )Ty fix) _ l)lz(Ac)] (77)’
A

1A on= [ [ dray fir( = 22+ 1100,
di(a') =§6(a’ —a) +8(a’ +a)).

lil. INFINITE-VOLUME PRESSURE INDEPENDENCE OF
THE BOUNDARY CONDITION

In this section we will concentrate on the proof that the
infinite-volume limit pressure does not depend on the typical
boundary condition “nesupp 1~ whenever ue¥; (z).

Several results on the independence of the infinite-vol-
ume pressure for the so-called classical boundary conditions
have been obtained.”® However, it seems to us very likely
that the class of classical boundary conditions is not of mea-
sure 1 from the point of the Gibbsian approach to this prob-
lem. Therefore, all the results® are incomplete for the pres-
ent applications.

A. Shape independence
Let £ %% (z). Then, we define the finite-volume pres-
sures
@) = — (I/|[ADIn Z3 (2),
Pi(2) = — (1/|ADIn Z7 (2),

(3.1)
(3.2)
for “nesupp p.” The corresponding infinite volume limits
will be denoted by p° (z) and p?, (z), respectively.

Lemma 3.1 (shape independence): Let ue¥" (z). When-

ever A1R 2, in the sense of van Hove, and such that JA are
piecewise C ', then

\l;’ : lim p} (z) =p7 (2) (3.3)
AtR?

n

exists and does not depend on the chosen sequence A1R 2 as
above.
Proof: Let us rewrite Z 7 in the following way:

Z7(2) = fpg“(a@)exp(zf :C(¢7):1(X)dx)
A
Xexp(zf (@) () (e (W) (x) — 1)d 2x>
A

Xexp( — zf s(@) 1 (x)s(¥2*) (x)d 2x) ,
A
3.4)
where : :; means the normal ordering with respect to the
covariance ( — A + 1) 7, ie,
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:c(@) (x):" = “exp((€°/2)S(0))cosep(x),

$(@) (x):, = "exp((€2/2)S(0))sinep(x). (3.5)
Using the L, estimate following from the (proof of)
Theorem 3.4 in Ref. 22 for the half-Dirichlet state (at this

point one can use conditioning inequalities), we have that
there exist constants c,,c, independent of 7 such that

|Z7 (2)|<c, exp ¢4 ?|Al. (3.6)
Above we also used the following trivial bounds:
[s(¥2*) (x)|<1 and |c(¥2*)(x)| < 1 pointwise on S'(R ?).
Recall that here the corresponding quantities are not Wick-
ordered.

From the estimate (3.6) it follows that whenever
A, 1R ? in some well-prescribed sense there exists a subse-
quence (') C (n) such that PR, (2) is then convergent.

In the case when {A, } is such that JA,, are C ! piecewise
and there exists € > 0 such that

lim |A,|/)3A, '+ = w,

it follows that every accumulation point of the sequence
{p%_(2)}is equal to p?, (z) and this proves the claimed con-
vergence and shape independence. Q.E.D.

B. Estimates on ¥2*

Several local decay properties of the solutions of the sto-
chastic Dirichlet problem (1.3) have been proved in the ba-
sic paper.® However, the results obtained in Ref. 6 are not
sufficient for our purposes. As we will show below, some a
priori bounds are needed for the estimation of the quantities
like §, |W2*|P(x)d *x, where A is a typically unit cube in R
and p>1. Such estimates follow easily from the application
of the Chebyshev inequality.

Let us denote

KAxp)=(—A+ D7 (xp) — (=A% + 1)~ (xp).
(3.7)

It is well known that K ?*(x,x) is a smooth function for
x&dA and has exponential decay as dist(x,dA)— 0. More-
over, as x—JA, then K% (x,x) behaves like (1/
27)In|dist(x,dA)| (see, i.e., Ref. 3).
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Lemma 3.2: Let u€%:(z). Then for any unit cube
ACR ? and any bounded A CR * with C '-piecewise bound-
ary, there exists a constant C;(7,A) finite for x a.e. 7 such
that for all B < 1 the following estimate holds:

B
f (\P‘ZA)z(x)dmCs(n,A)U K""(x,x)dx] . (3.8)
A A

Proof: Let ¢(R?) be the partitioning of R ? onto unit
cubes such that Aec(R ?). Take 8 > Oarbitrary and fixed. For
ned'i(z), we have

B
JZ [ﬂES'(RZ) Elf (‘I",’,A)z(x)dx>i(J- K"A(x,x)dx) ]
J Ja; 8 A

<2,u{nes’(R2) f (W32 (x)dx
J A;

1 B
> — [J K"A(x,x)dx] ]
8 LJa

(by the application of the Chebyshev inequality)

-8
S J-K‘M . d]
< z,:[ N (x,x)dx
x [[wam (f (%’,A)Z(x)dx)
4

1-8
<& const (z (j K""(x,x)dzx) ) .
J 4

Whenever B < 1 the sum 3, is finite due to the exponential
decay of K ?*. Since § is arbitrary, the proof follows. Q.E.D.

For the case of completely regular Gibbs measure one
can generalize the following.

Lemma 3.3: Let pe¥%:,(z). Then for any unit cube
ACR ?and anybounded A C R ?witha C '-piecewise bound-
ary there exists a constant C,(7,A) finite for 4 almost every
77 and such that for all 8 < n/2 the following estimate holds:

B
J | WA | (x)dx < Cy(1,A) [f K‘”‘(x,x)] .
a a

Proof: The main argument is again the Chebyshev in-
equality applied as in the proof of Lemma 3.2. The addi-
tional argument comes from the assumed complete regular-
ity of u. From ue¥:, (z) there follows from the Cauchy
integral formula the following estimate:

[wtam T nes| <y const T
i=1 i=1
(3.10)

Q.E.D.
J

‘ B
f (\I/‘,a,'\"'(J\:))2 dx> % [J KaA’(x,x)dx] }
A A

(3.9)

Iz [neS'(R %)

<Zu {veS’(R )

<53 Sdu(m) [ 54 (¥ () dx]
rg [IAKaA"'(x,x)dx]ﬁ

A typical contribution of the integrals to the sum X, is
bounded by O(1)exp — dist(A,dA, ). Let us denote
a, = dist(A,dA, ). Applying the root criterion we easily
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The following estimates of the quantities like
$4(V¥2*)2 dx for dist(A,dA) = €> 0 should be useful in
future applications.**>*

Lemma 3.4: Let ue%:(z). Let ACR? be a bounded
with C !-piecewise boundary subset, and let A be a unit cube
in R 2 such that dist(A,dA) = 6 > 0. There exists a constant
Cs(1,A,8) finite for u a.e. 7 and such that

J [V¥24 (x)|?
A

<Cs(7l9A,5)(f AK % (xx)dx
A

+ (J- K ""(x,x)dx)ﬁ) ,
A

for any B < 1.
Proof: By elementary calculations we have

(3.11)

AK 2 (x,x) + 2K % (x,x)

= 2_[ J‘ (V. P (x,2,))8(2,,2,) (V. P (x,2,))dz, dz,,
AJA
(3.12)

for xgdA.

Moreover, AK ?*(x,x) still has exponential decay in the
dist(x,0dA) argument. Therefore, we may again apply the
Chebyshev inequality in the spirit of the proof of Lemma
3.1 QED.

The unpleasant feature of the obtained estimates is the a
priori dependence of the constants C,, C,, and C; of A. How-
ever, this dependence is not very essential as the following
estimate shows.

Estimate: Take ue%: (z) and let Aec(R 2) be given. Let
{A,} be any sequence of bounded subsets of R 2 with C!-
piecewise boundaries and such that A, tR ? monotonously
and by inclusion. There exists a subsequence (n') C () and
a constant D(7,3) finite for 1 a.e. % such that, forall B < 1,

B
f(\l",’f"’(x))2 dx<D(n,B) U K""(x,x)dx] . (3.13)
A A

Proof: We use again the Chebyshev inequality. Let us
take p > O to be arbitrary. Then

L (Yo (x))? dx> % U K a""'(x,x)dxr]
A

1-8
<6 2 U Ka'\”'(x,x)dx] .
n A

conclude that the series 2. is convergent whenever

lim'inf (a,/n')>0.

R. Gielerak 2897



From the assumptions made on the sequence {A,, } it follows
that a subsequence of that type (n') C (n) may always be
chosen. Because § is arbitrary the proof follows. Q.E.D.

The value of the proved estimate is the following one. In
some situations we know from the very beginning that the
thermodynamic limits of some quantities of interest do exist.
Therefore, it is enough to control these thermodynamic lim-
its by passing to an arbitrary subsequence. It follows from
the proof that the most natural case of the applications is the
case when A, 1R ? in the sense of Fisher.

Remark: There exists the corresponding version of this
estimate for the case of completely regular measures. In par-
ticular, they have been applied in Ref. 34 to prove conver-
gence of the high-temperature cluster expansion in the
P(¢), models (however, nonuniform in the boundary
data). In this paper, we will not use it, therefore we will not
write them explicitly.

The following lemma also shows mild dependence on
the volume |A| of the constants C;, C,, and C; in the above
proved lemmas.

Lemma 3.5: Let {A,, } be any sequence of bounded sub-
sets of R  with piecewise-C, boundaries {JA,, } and such that
A, 1R ? monotonously and by inclusion.

(1) Letue¥:(z) and let a number p > O be given. Then,
there exists a subsequence (#’) C (n) and a function C4(7,0)
finite y-a.e. and such that

f (WM () de<Colmp)|OA, 1 +2,  (3.14)
(GAy)

where
d,\A = {xeA|dist(x,dA)<1}.
(2) Letued, (z) and let a number p > 0 be given. Then,

there exists a constant C,(%,0) finite u-a.e. and a subse-
quence(z') C (n) such that

JIV‘llf,A"'P(x)dx(C,(ﬂ,p)I&A,,, [P +e. (3.15)

Proof: Estimates (3.14) and (3.15) are obtained rigor-
ously again by the application of the Chebyshev inequality
and the assumed regularity of u. Instead of writing the for-
mal proofs in detail, we explain why these estimates are true.
Taking € > 0 we have

The last estimate follows from the well-known fact that there
exists a constant ¢ such that for every A;ec(R 2y we have
IK ?*{|.1(a, <c (see Proposition 7.8.7 in Ref. 3). Using ad-
ditionally formula (3.14) the evidence of the validity of
(3.15) can be seen by similar arguments. Q.E.D.

For the completely regular measures we note the follow-
ing estimates.

Lemma 3.6: Let {A, } be asin Lemma 3.5. Assume that
ueZ!, (z) and let p> 0 be given. For every integer k> 1,
there exists a constant Cy(%,0,k) finite i-a.e. and a sequence
(n’')C(n) such

f W™ () [* dx<Cy(my0,6) [9A | +2. (3.16)

n

C. Shift transformation

Now we are ready to demonstrate that the effect of the
conditioning is a typically bondary effect and in the case of
pressure it vanishes in the thermodynamic limit.

For a given bounded A C R ? with C '-piecewise bound-
ary dA, let us denote (here 0 <e < 1)

Y = {xeA|dist(x,0A)>1}, -
Y, = {xeA|dist(x,Y) <€},
Ye=A-Y..

Let y,.(x) be a function (indexed by A) such that

X€C&(R?),
=1, xe¥,
0<XE (x) <17 xEYg’ (3.17)
=0, xeY°*
and such that
sup max{|dy*|(x),|d:x. | (X)}<Co(A) < o0,
(3.18)

sup |Ay*| = €y, (A) < co.
xeA

iy S " dx
f p(dn) |OA, |1+ In the formula defining Z 7 let us perform the following shift
aA, |- f d J @ )(\P‘M P transformation:
'S W Ix "(x
| o, S HET A A H
<const|dA, | < Using
]
d aA( - e\ya/\) 1
= dngé) = =expl — p(U5)exp o f XT3 (x)dx, (3.19)
where J £ (x)=( — A + 1) (x.¥3*) (x) is given by
0, xe¥,
Ji(x)=4(— Ay WA (x) + 2(Vy, ) (x) (V¥2*) (x), x€Y, —7, (3.20)

0, xeY*

#
Note that because V: W2* is a C = function inside A as it is a solution (in §”) of the elliptic homogeneous equation
n
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( — A + 1)W2*(x) = 0. This is a reason why the transformation made above has a perfectly correct mathematical sense.

Using these formulas we have

Z7(2) 1 .

x (exp[z f [elg + (1 — x J¥2(x) — (@) (x) ]] dx expl — (U )))A @.

By the application of the Cauchy—Schwartz inequality we
have

Z7%(2)
Z3(2)

where we have a defined

I (2) = exp(—;- fxe (x) WA (x)J ¢ (x)dx) . (3.23)

<IL ()T () V3005 ()12, (3.22)

I (z) = (exp[hf (clp + (1 —x ) ¥ (x)
A-Y

—c(gv))dx)A (z), (3.24)

IT3 (2) = (exp — 2¢(J 3))4 (2). (3.25)
Now we prove that all these factors have a typical behavior
like exp O(7)|dA}.

In the next three lemmas we assume that {A,,} is a se-
quence as described in the Lemma 3.5 above. Additionally
for a given sequence {A,, } we choose a sequence y” such that

Cio(€) =sup Cp(A,) <
and (3.26)

C”(e) = sup Cll(An) < 0.

Lemma 3.7: Let {A,} be as above. Let uc%*(z) and
p>0 be given. There exists a constant C,,(%) finite on
supp 4 and a subsequence (n') C (n) such that

[T, ()| <exp Ci(n,p) |9A, |' *7. (3.27)

Proof: It is due to the factor J; in the integral over dx
that this integration is made over theset ¥, — Y=9.A. Us-
ing the definition of J; given by (3.20), the properties
(3.18) of y,, and the Cauchy-Schwartz inequality, we have

I, (n<exp2- GGy [ (40P dx
2 3LA,

1 o, 2 172
xXexp — CyCio (VW "(x)) dx
4 aiA,

Proof’ By a little algebra we have

3.21)

172
X exp 1 CoCio (f \l’f,A"(x)dx) . (3.28)
2 3in,

Given the sequence {A, } as in the assumptions and using
then Lemma 3.5, we conclude that there exists a subse-
quence (n') C (n) such that

I}, (7)<exp Cy,(np)|0A, | +7. (3.29)

QE.D.

Lemma 3.8: Let {A, } be as above. For any ue%:(z),

p > 0 there exists a constant C,,(7,0) finite zz-a.e. and a sub-
sequence (n') C (n) such that

T3, (7)|<exp Ci3(n,0) |9, |' **. (3.30)

Proof: From the correlation inequality (2.1) it follows

that for every feH _,(R ?) we have

(€Y 5 2)<exp 3l £ 112 1,045 (3.31)

uniformly in the volume A. Applying this observation we
have

T3, ()| = {exp — 20(J 5)) 4 (2)
<exp(2|j( — A% 4 1)(Xs‘l’f,A)||2— L3A

=exp 2 J‘ dx J§(x) (x.Y2*) (x).

We see now that the integral to be estimated is an almost
identical to that met in the Lemma 3.7. Q.E.D.
We proceed now to estimate the factor IT% (7). Here, we
use the cos €p bound of Fréhlich.?? From the use of this
bound there follows our technical restriction on the size of €.
The cos €@ bound says that for every regular f we have

v (e0(¢+0)(f)>A (z)<e(llf.+llf||,,¢¢,)
0K8< 27 ’

(3.32)

uniformly in the volume A. Here we have to assume that
p(e)>1/(1 — é/4rw). (3.33)

Lemma 3.9: Let {A, } be sequence as in the Lemma 3.5.
Let ue %' (z). There exists a constant C,,(n) finite z-a.e.,
such that

IT; (1)<exp Cy4(17)|9A,|. (3.34)

172
Hi"(n)<(<exp(2zf dxic():an, (X)ie(1 — 2U2):(x) — 1)) (z))
Ay A

X (exp - ZZJ‘ dx:s(@):n,s(@ —x:\l",’,""):(x)> (2).
A'l
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The functions
(1 — YWty (x): — 1
= exp((a®/2) (1 — y*)*K 2 (x,x))

X cos ex(1 — ¥ )W (x) — 1 (3.36)
and
(1 — y2W,"):(x)
= exp((ex?/2) (1 — ¥*)2K 2(x,x))
Xsin ex(1 — y2 )Wt (x) (3.37)

are both supported on the set A — Y and are bounded there
by

lie(1 — x)W(x): — 1

<2(1 — y™)exp(ex?/2)K **(x,x) (3.38)
and
(1 — Y Wa™(x)|

<(1—ye) (x)exp(ex?/2)K **(xx). (3.39)

Note that we have changed € in formula (3.35) defining
interaction by a in order to exclude the possible missing of
the symbols used.

The functions K ?*(x,x) have locally integrable singu-
larities on the set A. They have the behavior like

K (x,x) ~ — (1/2m)In|dist(x,0A ) |e ~ distx04) (3.40)

as x—dA. In applying the cos ep bound we need to have
a*<2/(1 —1/27). Assuming this holds, we can apply
Lemma 3.6 to both the factors in the estimate (3.35). Q.E.D.

D.pl =p.,

Summarizing our discussion we have the following
theorem.

Theorem 3.10: Let €? <2/(1 — 1/27) and pe¥9:(z).
Then

V. lim pl(2) =p% (2) =% (). (3.41)
AtR?

7
Here A 1R ? means any sequence {A, } of bounded, with C !-
piecewise boundaries subsets of R 2 such that A, 1R monot-
onously and by inclusion and such that, for some p > 0,

lim (|3A, |'+#/|A,|) = 0.
nteco

Proof: From Lemma 3.1 we know that there exists for u
a.e. 77 a subsequence (n’) C (n) such that the limit

0%, = lim In(Z3 (2)/Z3,, ()~ "™

exists. From formula (3.21) and the Lemmas 3.7-3.9 it fol-
lows that for u a.e. 7 we have 8. = 0. From this we con-
clude that p° (z) is the only accumulation point of the se-
quence {p} (2)}. Q.E.D.

IV. COMPLETING OF THE PROOF OF THEOREM 1

The sequence of moments {C%, (x,,....x,)},_,. . does
not describe fully the measure i but rather its restriction to
the even part of the o algebra =, (R ?) only. From the inde-
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pendence of the boundary conditions of the moments
{c?, (x4,...x, )}, - 1. it follows that every even function of
the field @ does not depend on the boundary conditions. In
particular, taking an arbitrary sequence f;,..., £, €S(R 2) we
conclude that the moments

Ccl (fl”f;n | (XppeeiXy)

= }iglzfdlux (@) :ljlx :cos €@y:(x;), (4.1)
where
1c0s €@ :(x;) = exp((€°/2) (S * £;) (0))
Xcos e(@*f;)(x;) (4.2)

does not depend on the given 7 if ¢”, (x,,...,x,) does not
depend on 7. By the arguments identical to those used in the
proof of Proposition 2.4 we have the following correlation
inequality.

Lemma 4.1: Let ue9:(z). Take f,,...,£,€eZ (R?) and
a,,...,a,€[0,27) arbitrary. Then for 1 a.e. 5 the following
correlation inequality holds:

<ﬁ :cos(e.pf’ + a,.)(x,.):>77

i=1

n 0
<<H :cOS e¢,’_:(x,-)> . (4.3)
i=1 A
We note the following lemma also.
Lemma 4.2: Take uc%:(z) and f,,..., f, as in Lemma

4.1. Then for u a.e. 7 we have

<fI :c0s €@,:(x;):sin e:pf"“:(y)>
i=1

assuming that {(c(@) (x))7 = {c(¢(0))°, holds.
Proof: Let us choose an arbitrary number ac[0,27). Ap-
plying Lemma 4.1 and Corollary 2.3, we obtain

=0, (44)

7
o0

n 7
(II c(@y) (x)s(gy,, £ a(y)>
i=1 oo

. 7
=cosa <H c(¢fi)(X,~)C(¢fn+,)()’)>
i=1 it

n

n
Fsin a( II c(@s) (xicley, . ) (y)>

i=1

n ]
=cos a <H c(@g) (x; )c(¢fn+l)(y)>
i=1 oo

n 7
Fsina <H cle) (x)s(py, ) (y)>

i=1

n 0
< <]'[ C(¢>f,.)(x,-)C(¢,"+,)(y)> .
A

i=1

Taking ae(0,7/2) we have
n ]
+ (H 0(¢,,)(x,-)c(¢p,n+,)(y)>

=1

<

1—cosa ( ~
sin

II c(¢,,)(x.~)c(¢fn+,)(y)) .
A

i=1

Letting a 10 we get the result. Q.E.D.
From this we easily obtain the following corollary.
Corollary 4.3: Let ue9':(z) and let f,,..., f,€Z (R ?).
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we have

= (@),
~(1I ston = ))

i=1

Then assuming (¢(p) (x) »

<ﬁ S(cpf,)(x.-))
i=1

and for arbitrary g,,....¢.€Z (R %) we have
n m n
(II cle,)(x) s(%,)(y;))
i=1 j=1 ©

= <1H1 clg)(x) [I S(qlg,)(yj)) ,
- i=1 A

assuming the equality (c(@) (x))7, = (c(¢)(0))S,.

Proof: From the repeated use of the formula

sin a sin B = }[cos(a — B) — cos(a + B)]
and application of Lemma 4.2 and Corollary 2.3 the proof
follows easily. Q.E.D.

Finally, we are ready to prove Theorem 1.

Proof of Theorem I: 1t is well known that p° (z) is a
concave function of the coupling constant z. From this it
follows (see Refs. 35 and 36) that p° (z) is almost every-
where a differentiable function (except at most a countable
set of values) and that we have the equality

4.5)

(4.6)

d d
&z AP O)= lin TP @),

at the points of differentiability. The arguments of Sec. III
can easily be extended to treat the following perturbed pres-
sure:

PR (zA) = — l_ll\l In J. exp(/l J c(@) (.x)dx)
Xexp(zf c(@ + W) (x)dx 6A(d¢>)),uo.

A
4.7)

In particular, we obtain that the unique thermodynamic lim-
it

Pl (zA) = Ah,’? pi(zA) (4.8)

exists (Whenever AR 2 as in Sec. III) and is independent of
the typical boundary condition 5. Moreover, the limit is dif-
ferentiable at A and z almost everywhere. Assuming that
P° (z) is differentiable at the point z = z, we obtain

dA b i=o0
45

= dA pw /1=o—dzp°° (Z) z2=1z,
1

= lim [ @)@ = tcro). @
= lim d PX(zo/l)l
AtR

= hm —_ (c(q:)(x))"dx, (4.9)
AtR?

which shows that p:’c (zp,A) is then differentiable at the point
A =0 and that [assuming the limiting measure { )", (2,)
has a translationally invariant first moment] the following
equality holds:
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(c(@)(0))% (z) = {c(@) (x))7 (2,). (4.10)

Thus, the bootstrap principle of Corollary 2.3 then is appli-
cable with the result that if i is any regular measure then for
pae neS'(R?) and n>1, we have

<]'[ C(¢>)(f)> (20) = <H 0(¢p)(f)> (29).
(4.11)
For the regularized moments of the form

n m 7
(111 coqtxp) 1T (o) (yj))w

we then apply Corollary 4.3. The limits f; 15, g; 16 of both the
sides of equality (4.6) can easily be controlled by the appli-
cation of the coseg-type of bounds for the measure
ul (dp). Q.E.D.
Remark 4.1: Taking into account Remark 3.1 we can
eliminate the A-perturbation argument used above.

V. CONCLUDING REMARKS

The main motive for writing this paper is the question
about the global Markov property for the two-dimensional
scalar fields. In the case of lattice systems some results con-
cerning this problem have been obtained in Refs. 37 and 38.
The main strategy coming back to Preston,' and Félmer® is
to introduce a certain order (the FKG order) into the set of
Gibbs measures. Some simplifications have been made in the
paper by Goldstein.*® The method of this paper combined
with the superstability estimates has been applied by the au-
thor to show the global Markov property also for some non-
ferromagnetic continuous spin systems in Ref. 41.

One of the main obstacles to applying immediately the
techniques of the FK.G order to the continual case is that we
do not know whether such an order can be defined in space of
the Gibbs measures describing the continual fields. The in-
triguing question is to find a suitable notion of the lattice
regularization which discretizes the Dirichlet problem (1.3)
in a proper sense by which we mean, first, that the discrete
versions of the corresponding local specifications are con-
vergent surely to the continual one, and second, the shift
transformation exists which transform the discrete versions
of local specifications to the forms considered in Refs. 37 and
38. Then, the FKG order may be induced into the set of the
continual Gibbs measures on account of the assured conver-
gence. But we have not checked any details of this intriguing
program.

On the other hand, the methods of the present paper do
not use any kind of ferromagnetic properties of the continual
fields. Therefore, they seem to be very useful in the study of
the DLR equations for continual fields that are defined by
the trigonometric perturbations of Gaussian, generalized
fields. Such an analysis has been performed by the author in
Refs. 42-44.
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APPENDIX

In this Appendix we review some results obtained by
Folmer’ and Weizsacker and Winkler,®° which are relevant
for us. Related results can be found also in the second
chapter of Preston.’

Let {/,a} be an increasing net that is countably generat-
ed. Assume that {),2} is a standard Borel space and that for
every ieJ there is a sub-c-algebra £, of £ such that
i j=>%,; CZ,. A collection ¥ of stochastic kernels {p;, icJ}
from {Q,3,} to {Q,2} is called specification iff

(sl) V V P,(-,F) isZ; measurable,
ieJ FeL

(32) v VP,'('5F)=1F’
ieJ FeX,;
(3) id=>P, P, =P,
A probability measure u on {Q2,2} is called the Gibbs state
corresponding to the given specification V iff it satisfies the
DLR equations

(DLR) VYV poP;, =pu.
ieJ

We collect the fundamental results obtained in Refs. 7-9
and 44 in the following theorem.

Theorem A.1: There exist a standard Borel space
{0 _,2_ } and a stochastic kernel P_ from Q_ to Q such
that the mapping u —u P is an affine bijection from the set
of probabilistic measures on {Q2_,= _ } onto G(¥), in parti-
cular, G(¥) = {uP_ |u runs over probabilistic measures on
{0, ,2_ }} and the extremal points of G(¥) (the so called
Martin-Dynkin boundary)

GV ={P_ (0 ;—)|o e}

The set dG(V) of extremal points of G(¥) is measurable
with respect to the evaluation o algebra £ and for each Gibbs
state u there is a unique probabilistic measure p on {8G(V),
dGnZ} such that

VouE = [ vBdm.
BeX aG(V)

For the application to field theory we put {Q,2}

= {S'(R?),B}, {J=1{A,},C} any monotone sequence of
bounded regular subsets of R ? tending to R > monotonously
and by inclusion. Then £, = Z(A;}).
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Approximate solution of Fredholm integral equations by the maximum-
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An approximate means of solving Fredholm integral equations by the maximum-entropy
method is developed. The Fredholm integral equation is converted to a generalized moment
problem whose approximate solution by maximum-entropy methods has been successfully
implemented in a previous paper by Mead and Papanicolaou [L. R. Mead and N.
Papanicolaou, J. Math. Phys. 25, 2404 (1984)]. Several explicit examples are given of
approximate maximum-entropy solutions of Fredholm integral equations of the first and
second kinds and of the Wiener—Hopf type. Both the weaknesses and strengths of the method

are discussed.

I. FORMULATION OF THE MAXIMUM-ENTROPY
METHOD OF SOLUTION

Consider an integral equation of the general type:

b
P(x) = ¢(x) — f dy P()K(x,p) ,

where P(x) is the unknown function sought on the interval
[a,b], #(x) is a given function, and K (x,p) is a given kernel.
When [a,b] is finite in (1.1), we have a Fredholm equation
of the second kind, when [a,b] = [0, ], a Wiener-Hopf
equation, and, if the left-hand side of (1.1) is replaced by
zero, a Fredholm equation of the first kind.! As yet no re-
strictions are placed on the specific form of the kernel
K(x,p). Our strategy will be to convert (1.1) into an equiva-
lent generalized moment problem whose maximum entropy

- solution has been studied in some depth by Mead and Papan-
icolaou.? To accomplish this transformation, let M, (x),
n =0,1,2,..., be a linearly independent set of functions de-
fined on the interval [a,b] (possibly infinite). Multiply both
sides of (1.1) by M, (x) and integrate both sides of the re-
sulting equation with respect to x over the interval [a,b].
After some rearrangement, the new equation reads

(1.1)

b
Hn =f dy P(»)G,(y), (1.2)
where
b
#,.Ef M, (x)¢(x)dx, (1.3)
b
G, (x)=M, (x) +f dt K(t )M, (1) , (1.4)

and where, in (1.2)-(1.4), n =0,1,2,.... Equations (1.2)
have the form of a generalized moment problem where the
given generalized moments u, computed from (1.3) are
generated by the set of known functions G, (x) defined by
(1.4).

Some remarks are clearly in order at this point. First, in
obtaining (1.2) from (1.1), an interchange in the order of
two integrations is made. Henceforth, we assume that any
singularities present in the kerel K(x,y) are sufficiently
weak to permit this interchange. This property of K(x,p)
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will be explicit in the numerical examples of Sec. II (the case
of singular kernels will not be investigated here). Second, it
is judicious to choose a set of functions M, (x), such that
integrals appearing in (1.3) and (1.4) [defining the z, and
G, (x), respectively] may be performed analytically. Al-
though, strictly speaking, this requirement is not necessary,
the maximum-entropy algorithm for the solution of (1.2)
described below is otherwise far less easily implemented. Be-
fore continuing the discussion, it is necessary to state the
maximum-entropy approximation to the solution of (1.2).

Given the set of known, exact moments g,
n=0,12,... N, determined from (1.3), the “optimal” func-
tion Py (x) satisfying the constraints (1.2), upton =N is
found by maximizing the entropy functional’

b
S[Py] = —f dx Py (x)[In Py(x) — 1]

N b
+ Z’li[ﬂi_f deN(x)G,(x)]. (1.5)
i=0 a
Variation of the entropy .S with respect to P, and the 4,
yields a set of maximum-entropy (max-ent) equations

b
7. =f dxG,(x)Py(x), n=0,12,.,N, (1.6)
where Py (x) is found to be

N

Py (x) =exp[ - Y 4G:(x)|. (1.7)
i=0

Equations (1.6) are just the moment conditions (1.2) deter-
mining the solution of the original integral equation (1.1)
truncated to finite V. They are to be looked upon as a set of
equations determining the unknown Lagrange multipliers
A;,i=0,12,...,N, the knowledge of which fixes the solution
Py (x) given by (1.7). Full details of the numerical algo-
rithm used to find the 4; may be found in Ref. 2, as well as
several successful solutions of the moment problem in phys-
ical applications. Details will not be given here.

Two further important points need to be discussed. The
maximum-entropy method assumes that one is seeking a
probability distribution Py (x), satisfying the given con-
straints (1.6); that is, the max-ent method returns a Py (x)
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that is everywhere non-negative on the interval [a,b]. There
is, of course, no guarantee that the original integral equation
(from which the moment problem was derived) has any
such solution. Nonetheless, we will seek a positive definite
solution P(x) to (1.1). If such a solution is not found, then it
may be possible to transform the original integral equation
into a new one having a positive definite solution by a change
of variable. Further discussion of this point is deferred to the
examples of Sec. II. Next, we must ask whether it will always
be the case that the solution of the full (N = « ) moment
problem (1.2), also be a solution to the integral equation
(1.1)? A partial answer to this question is available. For the
case that [a,b] is a finite interval (for example, [0,1]) and
the G, (x) are x" (or polynomials of degree n), Hausdorff
has provided necessary and sufficient conditions on the mo-
ments u,, such that a unique positive definite function p(x)
exists satisfying (1.2).® Thus, if HausdorfP’s conditions are
satisfied and (1.1) admits a unique positive definite solution,
the two must coincide since the moment the problem is de-
rived solely from the original integral equation. For the in-
terval [0, ], or for more general G, (x), numerical evi-
dence must be relied upon at this stage.

Il. NUMERICAL EXAMPLES

In this section a number of numerical examples are pre-
sented all but one of which have known, exact solutions.
These equations are chosen so that the various possible diffi-
culties pointed out in the previous section may be easily ad-
dressed. The max-ent solution Py (x), found from (1.6) and
(1.7), must approximately satisfy the integral equation
(1.1). The degree to which P, (x) satisfies (1.1) will be ex-
amined by evaluating for various x the left-hand side of (1.1)
[ just Py (x) itself], and the right-hand side of (1.1) with
P(x) replaced by Py (x). The latter will be denoted by
PYAX(x). Notice that

b
PYAX(x) = ¢(x) ~f dy K(y,x)Py (¥) 2.1

takes the form of [¢(x) plus] an average of K(y,x) over
P, (p). In Ref. 2 it is proved that averages of sufficiently
well-behaved functions F(x) over Py (x) converge to the
exact average of F(x) over the true P(x); that is,

b

b
(F(x)) =f dx F(x)P(x) = Alrim dx F(x)Py(x) .
(2.2)

Thus, assuming the moment problem (1.2) is equivalent to
the original integral equation, the Py (x) and PM**(x)
ought to therefore agree for almost all x in [a,b] in the limit
as N— . Moreover, in Ref. 2 the pointwise convergence of
Py (x) to P(x) was examined in the context of the moment
problem. It was found that while the pointwise convergence
of Py (x) was slow (indeed, in some cases not even certain),
averages of the form (2.2) were rapidly and smoothly con-
vergent. It follows that for a given N, P¥4¥(x) defined by
(2.1) is the optimal max-ent approximation to the solution
of the integral equation.
The first example is the Fredholm equation

1
Px)= —1 +%f dy P(y)e™>—, (2.3)
0
with ¢(x) = — 1, K(x,p) =} e/ =\ The exact solution of
2.3)1s

P(x) = — |+ Ae* 4 Be~ %,
A= —1(1+4e/3)(1—¢*9),
B=e2A. (2.4)

Choosing M, (x) = —x", n=0,1,2,..., the moments are
found to be u, = 1/(n + 1). The G, (x) defined by (1.4)
are nth-degree polynomials plus linear combinations of e*
and e ~ *. These will not be displayed explicitly. The five mo-
ment (N =4) set of max-ent equations (1.6)-(1.7) are
solved numerically by the procedure of Ref. 2. The resulting
Lagrange multipliers, 4,, i = 0,1,...,4, are given in Table I.
Values of P,(x), P}Y**(x), and the exact P(x) are given in
Table II for various x. Notice that the agreement between
P, (x) and PN**(x) (the approximate left- and right-hand
sides of the integral equation, respectively) is only moderate
(two significant figures). On the other hand, the agreement
between P4*(x) and the exact values of (2.4) are consid-
erably improved (four to five significant figures) in line with
the above remarks concerning averages.

The second example is a more difficult Fredholm equa-
tion studied previously by Guy et al.,*

TABLE I. The Lagrange multipliers A, computed for various integral equations.

Equation number

(2.10) (2.14)

—0.424 341 962
0.166 094 369 + 01

—0.139 898 559 + 01
0.682 825 062

— 0.147 264 389
0.106 746 868 — 01

0.363 033 198 + 01
—0.142 597 049 + 02
0.244 451 821 + 02
—0.534 121 593 + 01
—0.453 974 814 + 01
0.739 553 384 + 02
— 0.541 204 432 4+ 02
0.211 940281 + 02
—0.430 448 522 + 01
0.356 448 781

(2.3) (2.5)
Ao 0.524 704 574 —0.108 510936 4 01
A, —0.212 602 660 + 01 0.819 558 864 + 01
A, 0.983 172 725 —0.745 595 374 + 02
As 0.228 570776 + 01 0.263 801 845 + 03
A4 —0.114 285 388 + 01 —0.380 322311 4+ 03
As 0.193 471 906 + 03
As
As
Ay
Ao
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TABLE II. Five-moment max-ent solution of (2.3).*

x P,(x) PYAX(x) Exact
0.0 1.181 324 1.183 518 1.183 518
0.1 0.993 292 0.992 469 0.992 473
0.2 0.850917 0.851 300 0.851 229
0.3 0.753 738 0.754 322 0.754 313
0.4 0.697 809 0.697 636 0.697 639
0.5 0.679 610 0.678 896 0.678 998

*Note that all functions are symmetric about the point x =} on [0,1].

1
P =1 —f dy{2[1 4302 + ) 1V23P() . (2.5)
0

Here, the kernel K(x,y) =2[1 + 3(x* + »*)]'/? has norm
greater than 3 (see Ref. 4). Thus, the Neumann series! solu-
tion of (2.5) will fail to converge, whereas the Fredholm
series' is cumbersome to compute. If we choose M, (x)
=x",theny, =1/(n+1),n=0,1,2,.... The G, (x) may
be exactly computed and are algebraic functions (n odd) or
algebraic functions combined with logarithms (n even). The
A; are again given in Table I. The approximate (six-mo-
ment) functions P5(x), PY**(x) are given for various x in
Table III. In addition, values of P(x) are tabulated from the
numerical solution of (2.5) reported in Ref. 4. Two features
are evident in Table III. The first is the property of the max-
ent solution noted in the first example. The agreement
between Ps(x) and P}“*(x) is poor, however, agreement
between P A% (x) and the exact numerical values of P(x) is
marked (five significant figures). The second feature is that
both PY“*(x) and the exact P(x) take on negative values
near x = 1. This Ps(x) is manifestly non-negative; it tries its
best to become negative, however, dropping sharply to 10~°
at x = 1. That PY**(x) can become negative is due to the
minus sign in (2.5).

It is appropriate at this point to discuss what one might
do if the exact (and unknown) solution to an integral equa-
tion of interest happens to be negative over a significant part
of the interval [a,b]. Consider, for example, the integral
equation

TABLE Ill. Six-moment max-ent solution of (2.5).

x Py(x) PYAX(x) Exact®
0.0 0.499 835 0.410 047 0.410 043
0.1 0.369 716 0.403 856 0.403 852
0.2 0.400 899 0.385 688 0.385 685
0.3 0.384 521 0.356 634 0.356 633
0.4 0.308 136 0.318 170 0.318 169
0.5 0.241 952 0.271 848 0.271 185°
0.6 0.214 976 0.219 108 0.219 108
0.7 0.194 860 0.161 177 0.161 178
0.8 0.100 539 0.099 064 0.099 066
0.9 0.008 083 0.033 574 0.033 576
1.0 0.107 811 — 04 — 0.034 655 —0.034 652

*See Ref. 4.

®This entry, as reported in Ref. 4, is probably a misprint.
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1
P = (1-2) + [ (6 + 0PI, 2.6)
0
whose exact solution is easily found to be
P(x)=}—x. 2.7

The solution (2.7) is negative over the bounded subinterval
{ 1,1]. Let us attempt a max-ent solution by setting M, (x)
=2x", such that u, =1/(n+ 1)(n+2), n=0,1,2,....
The first two G, (x) defined by (1.4) are

Go(x) =3—-12x, Gy(x)= — (}+4x). (2.8)

It is immediately evident that G,(x) is negative over the
entire interval [0,1]. Since &, =} is positive, the max-ent
equations (1.6) and (1.7) cannot have a solution forn =1,
N>1. That one of the early moment-generating functions
G, (x) for some n is everywhere negative is a sure sign that
the exact solution of the integral equation is negative over
significant regions of interest. If, as in our current example,
P(x) is bounded in this region, a simple change of variable
will suffice to remedy the situation. In (2.6), let Q(x)
= P(x) + 1. The new integral equation then reads
1

0w = - Z 4 [ vy +x). 29)
Now, choosing M, (x) = —4/3x", we have u, =2/
(n+2)and

6x " 1

n+1 n42l
All of these new G, (x), n =0,1,2,..., are positive definite
functions on [0,1]. Hence, the max-ent algorithm will go
through. Indeed, the five-moment approximation Q ¥4%(x)
to the solution of (2.9) is accurate to a remarkable 12 signifi-
cant digits. If, then, the solution to the original integral equa-
tion is negative, but bounded, a simple change of variable
will still allow an approximate solution by the max-ent meth-
od. In many cases even an unbounded and negative solution
may be handled. Suppose P(x)>0 and bounded on [0,c],
negativeon [¢,1], and P(x) approaches — o« asx—>1. Then
the change of variable Q(x) = — P(x) + a, for some finite
a, will transform the equation to one whose solution Q(x) is
positive definite on [0,1].

The next example to be considered is the Wiener—Hopf
integral equation

4
G =—| —x"
' (X) 3[ x" -+

P(x)=e“""—4f e~ 1Y=xP(y)dy, (2.10)
0
whose exact solution is
— 3x
>0
Py =3¢ T x>0 11
) [;e*, x<0. (211

Since the solution is desired for all x, we first separate P(x)
as

PxX)=P*(x)+P (x), (2.12)

where P+ (x) =0 for x <0and P~ (x) = 0 for x > 0. With
this separation (2.10) reads

PH(x)=e M —4f e” !V =XPr(p)dy, x>0,
0
(2.13a)
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P~ (x) =e— M -4f e~ 1"=Hp+)dy, x<0.
0

(2.13b)

Hence, the optimal max-ent solution (for given N),
PY¥A4%(x), will be taken to be the right-hand side of (2.13a)
with P * (x) = P 5 (x), for x > 0, and the right-hand side of
(2.13b) [also with P*(x) =P § (x)] for x<0. In both
cases (x positive or x negative) the associated moment prob-
lem will be derived from (2.13a). Choosing M, (x) = 1x",
we find that 1z, = n!, and that the G, (x) are polynomials
plus a term proportional to e ~*. The numerical results for
N =35 are tabulated in Table I (the 4;,) and Table IV
[P}4%(x) for various x]. Once again Ps(x) (x>0) and
P¥**(x) show poor agreement, but P }**(x) and the exact
P(x) agree to three to four decimal places. That the few
moment max-ent method can approximate the solution of a
notoriously difficult type of integral equation (Wiener—
Hopf ) is encouraging, even for the moderate degree of accu-
racy obtained.
The last example we will consider is the equation

l + e~ X J‘& -

————= | dye ®P(y),
14 x? o ‘ (y

a Fredholm integral equation of the first kind, whose exact

solution is

(2.14)

Plx) = {smx, O<x<,
0, X>T.

Approximate solution of (2.14) is equivalent to numerical
inversion of a Laplace transform. For this equation a mo-
ment problem will be generated in a way different from the
previous examples. Both the left-hand side and the kernel of
(2.14) are expanded in a Taylor series about x = 0. Compar-
ing the two series expansions term-by-term yields the mo-
ment problem

My =J; dyy"P(y) »

where the first few moments u, are po=2, u,=m,
Ho=T" —4 py=1 —6m, uy=m"— 127* + 48, and so
on. The ten-moment max-ent solution of (2.16), Py(x), is
given for various x (up to x = 5) in Table V. The associated
A, are listed in Table 1. In this case, the optimal solution,

(2.15)

TABLE IV. Six-moment max-ent solution of (2.10).

x Py(x) PYA%(x) Exact
— 1.0 0.183 950 0.183 940
—038 0.224 676 0.224 664
—0.6 0.274 420 0.274 406
— 0.4 0.335 178 0.335 160
—02 e 0.409 387 0.409 365

0.0 0.494 380 0.500 027 0.500 000
0.2 0.275 931 0.274 258 0.274 406
0.4 0.150 484 0.150 585 0.150 597
0.6 0.082 094 0.082 776 0.082 649
0.8 0.045 131 0.045 471 0.045 359
1.0 0.024 963 0.024 922 0.024 894
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(2.16) -

TABLE V. Ten-moment max-ent solution of (2.14).

x Py(x) Exact
0.0 0.256 — 01 0.000
/8 0.399 0.383
/4 0.690 0.707
3n/8 0.946 0.924
/2 0.971 1.000
Sn/8 0.959 0.924
3n/4 0.660 0.707
Tn/8 0.481 0.383
T 0.456 — 03 0.000
3.5 0.110 — 38 0.0
4.0 0.0 0.0
5.0 0.0 0.0

PYAX(x), is not available. Thus, P,(x) must be relied upon
to directly generate an approximate solution. As a result, the
max-ent, Py(x), approximation is accurate only to a few per-
cent. Notice, however, that Py(x) rapidly vanishes for x just
greater than 7 as it should. In the numerical algorithm the
upper limit of integrations is taken to be infinite (~50 for
practical purposes) and not 7. The method itself generates
the cutoff at x~.

Ill. DISCUSSION

This paper will be concluded with a brief discussion of
the weaknesses and strengths of the max-ent method illus-
trated in Sec. II. Possible weaknesses are noted first.

(1) Itis not clear whether or not solutions generated by
a larger number of moments than used here would signifi-
cantly improve the numerical accuracy. If one needs to solve
an integral equation correct to, say, six or more decimal
places, other methods may be required. Ultimately, the algo-
rithm of Ref. 2 for solving the max-ent equations (1.6) and
(1.7) breaks down due to the accumulation of roundoff er-
ror (sometimes for low numbers of moments).

(2) It is clear from Sec. I that no assurance can yet be
given in all cases of the convergence of the max-ent method
adopted. Theoretical work is still needed.

(3) Currently the method has been worked out in some
detail only for equations in one variable. In many areas of
physics, such as scattering theory, the integral equations en-
countered are in two or more variables. Ultimately, the gen-
eral usefulness of the method explored here to physics may
depend upon how well it can do with multivariable prob-
lems.

(4) Often in physics, notably dispersion theory, one is
faced with integral equations with singular kernels. The au-
thor has not yet attempted such problems; it may be that the
maximum-entropy method cannot handle this important
class of problems.

(5) Finally, it is unclear how the method can handle
integral eigenvalue problems.

In spite of these difficulties, the proposed max-ent meth-
od has several advantages.
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(1) The major advantage is the flexibility inherent in the
method. In the previous examples, the form of M, (x) was
chosen to be cx”, ¢ constant. This choice generated an asso-
ciated moment problem. However, other choices of M, (x),
such as a set of orthogonal polynomials, may be more appro-
priate to the problem at hand and may generate more accu-
rate solutions. Furthermore, some thought on a given inte-
gral equation may reveal analytical information about the
solution (such as its asymptotic behavior as x approaches
some value), which may be incorporated into the max-ent
equations (see Ref. 2 for further discussion).

(2) Even if one can obtain a max-ent solution accurate
only to a few percent, the knowledge thus gained concerning
the qualitative behavior of the solution may suggest a differ-
ent method leading to accurate solution.

(3) Even if standard solution methods (such as the
Newmann series) fail to converge, max-ent may provide a
sufficiently accurate approximation (indeed in some cases,
very accurate).

(4) The approximate max-ent function Py (x), for giv-
en moderate value of N, may be thought of as a variational
starting point for an iterative scheme similar to the New-
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mann series itself. Indeed the function P ¥AX(x) is nothing
more than the first iterate of such a scheme. This may pro-
vide the required high accuracy solution.
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Group theoretic methods are used to systematically classify all possible internal structures for
an elementary classical relativistic particle in terms of coset spaces of SL(2,C) with respect to
its continuous subgroups. The allowed internal spaces Q are separated into first- and second-
order ones, depending on whether a canonical description can be given using Q itself or if it
needs the cotangent bundle 7" *Q. Three of the former are found, one corresponding to the use
of a Majorana spinor as the internal variable, the other two related to orbits in the Lie algebra
of SO(3,1) under the adjoint action. For the latter two, a Lagrangian description of an
elementary object with the corresponding internal space is set up, and the dynamics studied.

1. INTRODUCTION

Classical relativistic particles with internal structure,
sometimes called relativistic rotators, have been the subject
of a considerable amount of study recently. In addition to
space-time position variables x*, such particles possess a set
of internal variables ¢’, which describe an internal space Q
and are invariant under space-time translations. The Poin-
caré group & is the underlying symmetry and, for elemen-
tary systems, acts transitively on the total configuration
space of variables (x*, ¢"). The internal space Q admits a
transitive action of the homogeneous Lorentz group
SO(3,1). Such classical indecomposable objects are useful
starting points for the description of, and approximation to,
the concept of Regge trajectories. The action of SO(3,1) on
Q gives rise to spin. ‘

Several approaches are available and have been used to -

study the dynamics of such classical systems. One is to work
within the Lagrangian' or the Hamiltonian® formalism; an-
other is to directly write down manifestly covariant equa-
tions of motion after specifying a complete set of variables®;
or finally, one may derive the equations of motion guided by
the ten conservation laws and physically reasonable kinema-
tical constraints.* Of these, the use of the Lagrangian formal-
ism seems in many ways to be the most convenient. Both
manifest covariance and the conservation laws are easily en-
sured, and possible couplings to external fields can be sys-
tematically analyzed. In addition, Dirac’s theory of con-
strained dynamical systems provides a systematic procedure
for handling all possible Lagrangians and preparing the
ground for quantization.’

The Lagrangian approach was pioneered by Frenkel in
his study of relativistic charged spinning particles in external
electromagnetic fields.® Frenkel described spin by a second-
rank antisymmetric tensor. Subsequently much important
work was done by several authors, of whom we may mention
Mathisson,” Lubanski,® Honl and Papapetrou,® and Bhabha
and Corben.'° These developments are summarized in Cor-

®) Present address: Theoretical Physics Group, Tata Institute of Fundamen-
tal Research, Bombay 400005, India.
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ben’s book.'' As representatives of more recent work in
which the choice of an internal space plays a more important
role, we may first mention Halbwach’s use of a tetrad (vier-
bein) as the internal variable and as the source of spin.'? In
the work of Itzykson and Voros,'? the internal variable was a
four-vector attached to the space-time position, and the La-
grangian formalism was used. The work of Hanson and
Regge,' which has justly attained the status of a classic in the
field, again used a vierbein, equivalently the homogeneous
Lorentz group itself, as the internal space. They made imagi-
native use of Dirac’s methods for singular Lagrangian sys-
tems, and demonstrated that reparametrization invariance
leads to a mass-spin Regge trajectory relationship. This shift
of emphasis from describing a point particle with fixed mass
and magnitude of spin to describing a family of particles for
which, say, mass appears as a function of spin, occurs also in
the work of Rafanelli.'* Mukunda ef al.'® constructed two
models within the Lagrangian formalism, in which the inter-
nal variable was, respectively, a unit spacelike vector and a
Majorana spinor. In both cases a Regge relationship
emerged, but the algebraic structure of the constraints was
very different in the two cases.

On surveying the work in this field (in more detail than
is possible here), it appears that there has so far been no
systematic analysis of the problem in which all possible
choices of internal space Q are exhaustively classified and
examined on the basis of reasonable and uniformly valid
physical requirements. It is the purpose of this paper, and
following ones in this series, to provide such a treatment. We
shall show that it is possible to develop a systematic classifi-
cation procedure and analyze all possible internal structures
for classical relativistic point particles by using group theor-
etic and differential geometric methods. In each case the
Lagrangian will be taken as the starting point to analyze the
possible dynamics and Regge relationships between mass
and spin.

The material of this paper is organized as follows. In
Sec. II the three basic physical requirements that will guide
our analysis are explained, and some of their immediate con-
sequences are described. These requirements are indecom-
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posability of the classical particle with internal structure,

reparametrization invariance of the action, and symmetry of
the theory under the Poincaré group. In particular, the first
of these requirements shows that each possible internal
space Q is the coset space G /H of the group G = SL(2,C)

with respect to some subgroup H; and if one restricts H tobe
a continuous Lie subgroup of G, all possible @ ’s can be sys-
tematically classified. In Sec. III, the set of all possible Qs is
divided into two types, which we call first-order spaces
(FOS’s) and second-order spaces (SOS’s). The difference
between the two is that in the former case the phase space
analysis can be carried out at the level of Q itself, while with
an SOS the use of T"*Q is unavoidable. From this point on-
ward, this paper is devoted to FOS’s, the SOS’s being taken
up for study in later papers of this series. The search for
FOS’s is aided by the Kostant--Kirillov—Souriau (KKS)

theorem, which relates them to orbits in the Lie algebra G of
G under the adjoint action by G. The orbits are classified and
each one exhibited as a coset space G /H for a suitable H. It
turns out that only two such coset spaces arise, correspond-
ing to two possible H ’s, each of dimension 2. All nontrivial
orbits, except for one very special orbit, correspond to one
particular H, which is therefore the generic case; the special
orbit corresponds to a different choice of H, and is called the
exceptional orbit. The topological structures of the generic
and the exceptional orbits, which are quite different, are
studied via the Iwasawa decomposition theorem for G. It is
finally seen that there are three possible FOS’s, two realized
as a generic and the exceptional orbit in G, respectively, and
the third being a twofold covering of the exceptional orbit.
This last FOS turns out to be the same internal space as used
in the spinor model, which has been studied elsewhere.'* The
symplectic structures on the generic and the exceptional G-
orbits are studied in Sec. IV. In both cases the symplectic
two-form is shown to be exact, a necessary condition for
being able to set up a global Lagrangian. The Lorentz trans-
formation properties of the associated one-forms are also
examined. Section V takes up the question of constructing
the most general Lagrangian obeying the requirements of
Sec. II, when the internal space is one of the two FOS’s,
either a generic or the exceptional orbit in G. In both cases
the internal variable is an element of G, i.e., an antisymme-
tric real second-rank tensor £,,, with the invariants con-
structed from it being assigned definite values. These values
differ for the generic and the exceptional case. It is shown
that while in the generic case the simplest available Lorentz
covariant object that can be constructed on the internal
space, capable of being coupled to the space-time coordi-
nates, is a symmetric second-rank tensor ¢,,, in the excep-
tional case a more elementary object, namely a four-vector
V., can be constructed. Therefore, the model based on a
generic orbit as the internal space is referred to as the sym-
metric tensor mode! (STM). The behavior of nonspinorial
quantities, such as the space-time trajectory, in the spinor
model of Ref. 15, is identical with corresponding quantities
in the model based on the exceptional orbit as internal space.
Consequently, this latter model is not studied further here.

On the other hand, for the STM, both the constraint struc-
ture and the dynamical equations are worked out in some
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detail. The paper concludes with some remarks in Sec. VI.
A brief resumé of these ideas may be found in Ref. 16.

Il. PHYSICAL REQUIREMENTS AND GUIDELINES

For a structureless relativistic point particle, the config-
uration space coincides with Minkowski space-time .# with
coordinates x*. (The metricis + + + — ). The Poincaré
group Z acts transitively on .#. The canonical formalism
based on T*.# uses the conjugate momentum p,, and the
orbital angular momentum L,, = x,p, — X, p, as genera-
tors for Z. Absence of internal structure is reflected in a
vanishing Pauli-Lubanski vector:

Wﬂzgeywp"L""=0. (2.1)

To accommodate internal structure it is necessary to
enlarge the configuration space to the product .# XQ,
where Q is the space of internal variables with (possibly lo-
cal) coordinates ¢” . By definition Q is invariant under space-
time translations, and is only affected by homogeneous Lor-
entz transformations. In order to allow for spinorial internal
variables as well as with a view towards eventual quantiza-
tion, we shall use G =SL(2,C), the universal covering
group of SO(3,1), in place of SO(3,1). Therefore G acts on
Q via point transformations.

Let us now list the three basic physical requirements
that will underlie our analysis, and then comment upon
them. We require that (a) the action of G on Q should be
transitive; (b) in each given case, the Lagrangian . must
depend on the velocities X, ¢ (the dot representing the deriv-
ative with respect to an evolution parameter s) in such a way
that the action is reparametrization invariant; and (c) the
Lagrangian must be manifestly invariant or quasi-invariant
under the action by Z, i.e., .Z could change by a total deriv-
ative with respect to s as a result of action by an infinitesimal
element of Z.

Requirement (a) is a minimality condition expressing
the idea that the particle is irreducible or indecomposable,
ensuring that any two points of Q can be connected by some
element of G. The transitivity of the G action on { means
that Q can be identified with the coset space G /H for some
subgroup H in G. We shall take G /H to be the left coset
spaces, so an element of G /H is written as gH for some geG.
Since G is connected (and in fact simply connected), it fol-
lows that every coset space G/H is certainly connected,
whether or not the subgroup H is connected. We shall, how-
ever, restrict H to be a closed, connected, continuous Lie
subgroup of G, so that individual cosets gH will also be con-
nected. All such nontrivial subgroups are known up to con-
jugation,'” and are listed in the Appendix. The dimension of
a possible internal space Q is related to that of H by
dim Q = 6-dim H. Starting from the largest possible H,
namely H = G itself, and going down to the smallest, when
H consists of just the identity element, and including both
these possibilities, it turns out that there are 13 possible dis-
tinct choices for H, and in addition, there are two one-pa-
rameter families of subgroups. In the notation of Patera et
al,wewrite F, = G, F,,...,F,, F¥, Fg,....F 10, F§\ , F 5.0y F 14
F,5 = {e} for the possible continuous subgroups of G up to
conjugation. The one-parameter families are F§ and F,,
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with the range of the parameter ¢ in both cases specified in
the Appendix. Thus we find that requirement (a) has led to
the result that every conceivable internal space Q has to be
the coset space G /H with H equal to one of the F’s listed
above. The choice H=F, = G leads to a trivial internal
space, since then Q = G /H consists of just a single point; it
may be taken to correspond to the structureless mass point
mentioned at the start of this section, and will hereafter be
disregarded. The choice H = F,5; = {e} corresponds to Q
being G itself, leading essentially to the Hanson—-Regge mod-
el.’ All other classical models for indecomposable objects
with internal structure necessarily correspond to some inter-
mediate choice of H. In the context of linear relativistic
quantum mechanical wave equations, Finkelstein'* made a
similar classification of possible internal structures. It ap-
pears, however, that his enumeration was incomplete since
some of the subgroups F listed above were missing in his
work, and only 11 possibilities were listed.

Requirement (b) implies that the Lagrangian is homo-
geneous of degree one in the velocities x and . As aresult, we
have full freedom in the choice of the evolution parameter s,
such as proper time, physical time, etc. Reparametrization
invariance of the action is a kind of gauge degree of freedom,
causing the Lagrangian to be singular and leading to a pri-
mary constraint in the Hamiltonian formulation.

Requirement (c) in any theory ensures the validity of
the ten conservation laws and also ensures that in a singular
theory the collection of all constraints on the phase space
forms a Poincaré covariant set. From the previous para-
graph we know that there will be at least one constraint due
to the reparametrization invariance. In case there are no oth-
er constraints, this one is necessarily an explicitly Poincaré
invariant constraint among all available and independent
Poincaré scalars on phase space. For simple enough situa-
tions, these scalars are the two Casimir invariants of the
Poincaré group formed out of its generators, namely
P’= —M?*=p'p andW? = W* W, (seeRef.19). Wethus
see how under suitable conditions requirements (b) and (c)
can together lead to a constraint expressible in the form
P? = a(W?), which is essentially a mass-spin Regge rela-
tionship.

An interesting physical criterion worth keeping in
mind, and which serves to distinguish some choices of @
from others, is whether, at the end of the constraint analysis,
the Dirac brackets® of x* among themselves vanish or not.
This would have implications for the possibility of introduc-
ing configuration space wave functions in a quantum theory.
Of course, well before taking up this question, we must deter-
mine for each possible Q whether Lagrangians can be con-
structed in which there is a nontrivial coupling between the
space-time variables x, X and the internal ones g, ¢.

We now proceed to a systematic analysis keeping these
physical guidelines in mind.

lil. FIRST- AND SECOND-ORDER SPACES—STUDY OF
FOS’S

Even with the imposition of requirement (a) of Sec. 1I,
the number of possible distinct internal spaces Q is quite
large, and one needs some physically well motivated point of
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view, which helps to separate all possible Qs into different
types and makes the detailed analysis more manageable. We
now develop such a point of view. With respect to the setting
up of a canonical formalism starting from some Lagrangian,
two different possibilities arise depending on the nature of Q.
It may be that we are able to set up a Poisson bracket (PB)
structure on @, which is invariant under G, i.e., the point
transformations realizing the action of G on Q are canonical
transformations as defined by this PB. Then Q is of even
dimension and provided the Lagrangian has a suitable form
(described later), in the Hamiltonian treatment we need not
use T *Q at all. The physical idea is that in such a case there is
no need to introduce new variables canonically conjugate to
the internal variables ¢”, but that G-invariant PB’s can be
defined among the ¢’s themselves. A compact way of ex-
pressing all this is to say that Q is a homogeneous symplectic
G-space: homogeneous since G acts transitively on @; sym-
plectic since there is a closed nondegenerate two-form » on
Q leading to the PB; and symplectic G-space since @ is invar-
iant under G.

Internal spaces @ having the above properties will be
called first-order spaces (FOS’s). All other Q’s will be called
second-order spaces (SOS’s). In the case of an FOS, the Lie
algebra of G'is realized by functions and PB’s on Q. Provided
the Lagrangian is suitably chosen (see later), for an FOS the
canonical formulation for the entire problem uses 7 *.# X Q,
andnot T*(.# X Q) =~ T*.4 X T *Q, asthefull phase space.
For an SOS, on the other hand, use of T*.4 X T*Q is un-
avoidable. In either case, the generators of the physical ho-
mogeneous Lorentz group SO(3,1) have the form

Jo =L, +8,,, (3.1)

with S, related to the action of G on Q. The S,,, are realized
as functions on Q or on T *Q depending on whether Q is an
FOS or an SOS. Existence of the corresponding first- or sec-
ond-order internal structure is confirmed by a nonvanishing
Pauli-Lubanski vector:

W, =} € 'S (32)

The condition on a FOS Q enabling us to define a suit-
able Lagrangian taking advantage of the nature of Q is that
the two-form @ must be exact: @ = d6, 6 a one-form on Q.
The G invariance of @ means that 8 is either also G invariant
or else changes by a closed piece under action by an (infinite-
simal) element of G. (Even if the symplectic form is not
exact, a Lagrangian may be defined by working on a princi-
pal bundle on Q,?° but such cases will not arise in the present
problem.) Given the existence of the one-form 6, the La-
grangian has a leading term 6 /d' linear in the internal veloc-
ities ¢, and in the rest of the Lagrangian there must be no
dependence on § at all. (Of course the question of nontrivial
coupling between the space-time variables x, x and the g in
the rest of the Lagrangian must be examined. ) This kind of ¢
dependence in .# guarantees that the application of the ca-
nonical formalism to .# leads to just the PB’s on Q that are
determined by o in the first place. If Q@ is an SOS, there is no
such natural breakup of a possible Lagrangian into a part
linear in ¢ and a part independent of ¢. Of course, even in the
case of an FOS one might decide to treat the problem as
though it were an SOS, by constructing a Lagrangian with a
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nonlinear dependence on ¢ and later on passing to
T* (.« X Q). However, in our work we shall treat every FOS
in the manner detailed above, so that the final physical phase
space is just T*.# X Q.

The dimension of an FOS is, as mentioned earlier, neces-
sarily even and so must be 6, 4, or 2. To discover the FOS’s,
we make use of the Kostant-Kirillov—Souriau (KKS)
theorem?! which in the case of the group G, since it is semi-
simple, states the following: the only coset spaces G /H ad-
mitting a G-invariant symplectic structure are orbits in the
dual G* to the Lie algebra G of G under the coadjoint action,
or covering spaces of such orbits. However, again since G is
semisimple, there is no essential distinction between the
coadjoint representation of G acting on G* and the adjoint
representation acting on G, so we may equally well work
with the orbits in G in searching for possible FOS’s. Then if
we denote by D*¥ (g) the adjoint transformation represent-
ing geG and acting on G, and if & is any orbit in G, we have
D*i(g) & = & for every geG, and moreover ¢ admits a
unique (up to a constant factor), closed, nondegenerate two-
form, the Kirillov form, which makes ¢ a symplectic mani-
fold. We conclude that the possible FOS’s are orbits (or their
coverings) in G under D*¥ (g), so all orbits must be classi-
fied and each one exhibited as a coset space G /H. This we
proceed to do. We shall find that though there are several
families of orbits £ in G, only two distinct coset spaces arise.

It is convenient to deal with the Lie algebra G via some
faithful irreducible matrix representation of it. If the genera-
tors of such a representation are written as X,,,, they obey
the commutation relations

(21200 ] =8up 2o —8p2po + BuoZpy — BvoZpy -

(3.3)
In this representation, a general element of G is represented
by

J(§)=ig"v2pv’ (34)
where the real antisymmetric set § ¥ = — & with six inde-
pendent components denotes an element of G in the abstract.
Let the above representation of G lead on exponentiation to
the representation D(g) of G. Then the adjoint action of geG
on £€G is determined as follows:

&' =D*3(g)¢,

Here A(g) belongs to the defining four-dimensional “vec-
tor” representation of SO(3,1). It follows that under the
change £ £, there are two independent invariants that can
be expressed in terms of the three-dimensional quantities
& =1 €uéu, 7 =&y and can be conveniently parame-
trized as follows:

(gl =ig’w§uv = 'glz - Inl2=a2 - bz’

%2 = "'&epvpa guvng:g.n =ab.
The single point £, = 0 forms an orbit all by itself and is
omitted from discussion. For specified values of the param-
eters ¢ and b, the set of all §,, constitutes an orbit, which
may be denoted &, and over which €, and ¥, have the
above constant values.

In Table I, the orbits are grouped into suitable families,
with definite ranges for @ and b in each family. For each
individual orbit, the following additional information is giv-
en in Table I: (i) a conveniently chosen representative ele-
ment on the orbit; (ii) as an aid to geometrical visualization
of the nature of this representative element, an independent
set of space-time vectors which are invariant under the one-
parameter group of Lorentz transformations generated by
this representative element; and (iii) the generators of the
stability group of the representative element. The following
notation has been used in making the entries in Table I: J and
K are the generators of spatial rotations and pure Lorentz
transformations, respectively, so that

J(£) =§J —nK. (3.7)

The four unit vectors e, e,, e,, and e, are mutually orthogo-
nal, ¢, is timelike, and the others spacelike.

Asan example, &, , for a >0 is the orbit containing the
element aJ; of G and all its transforms under D%’ (g). The
unit timelike and unit spacelike vectors e, and e,, respective-
ly, are each invariant under the spatial rotations generated
by aJ;. For this reason, &, is also specially denoted as Z5.
Similarly, & is denoted as #* and &, for b>0as 75.

To study these orbits in more detail and for practical
calculations such as the determination of the stability group
of the representative element, etc., it is convenient to use the
defining (},0) representation of G which in terms of the
Pauli matrices ¢ is

(3.6)

J(&") =D@J(&)D(E) !, (3.5) 2y = — (i/2) o, (KI) cyclic, 28
£l =A@, A®). %, - S,=—}0. (3.8)
TABLE I. Classification of orbits in G.
Generators
Ranges Representative Invariant of stability
Orbit of parameters <, element vectors group
O s a,b>0 a’—-b? al,— bK, None J3,Ks
€, =ab #0
Ous a>0,b<0 a®—b? al, — bK, None J5.K;
Op=07 a>0,b=0 a? aJ, €n,es J5,K,
€,=ab=0 Oop=0" a=b=0 0 L+ K, e+ e e, Jy—K,,
J+ K,
Oop=0% a=0,b>0 —b? bK, e, e, J.K,
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(These differ from the conventional definitions by a factor of
i.) The general Lie algebra element J(£) of Egs. (3.4) and
(3.7) becomes the two-dimensional matrix

JE) =4 (m—i)o. (3.9
With this easy-to-handle representation, the results of Table
I'and the identification of each orbit as a coset space G /H are
readily obtained. We describe the families of orbits briefly.

& ., Jor € ,540: These are two disjoint, simply connect-
ed, two-parameter families of orbits corresponding, respec-
tively,t0 ¢ ,>0(a>0,b>0)and ¥,<0(a>0,56<0).On
any such Z,,, a convenient representative element is
aJ; — bK;, which in the (4 ,0) representation is the diagonal
matrix } (b — ia) 5. The stability group S of this element
consists of all matrices in G commuting with o3, that is, of all
diagonal unimodular complex matrices:

reia 0 ) ]
S-[(O (/me-ia) T>0 0<8<2m[. (3.10)

Thus S is independent of (a,b). The elements of S are prod-
ucts of unitary unimodular and real unimodular diagonal
matrices of the forms

(e”’ 0)(r O)
0 e % \0 /v

These constitute, respectively, the subgroup U(1) generated
by J; and the subgroup B(3) of pure Lorentz transforma-
tions (boosts) generated by K,. The stability group S is
therefore Fj, in the list of subgroups of G given in the Appen-
dix: §=F,=U(1) XB(3). In the two-to-one homomor-
phism G-SO(3,1), F, goes into the subgroup
$S0(2) XSO(1,1) CSO(3,1). Every one of the orbits &,
with % ,5£0 is seen to be essentially the same coset space G /
F,, which is thus a possible FOS.

& . JOr €, =0: Here one has the possibilities €, >0
(a>0, b=0), €,<0 (a=0, b>0) and ¥,=0
(a = b = 0). In the first two cases, one has simply connected
one-parameter families of orbits, with representative ele-
ments aJ, on &, and bK; on &,,. But in both cases, the
stability group of the representative element is the same S of
(3.10) asin the discussion of &, , for & ,#0, so these orbits
are topologically the same coset space G /F as before. Thus
consideration of these types of orbits does not lead to any
new candidates for an FOS.

The singular case €, = 0 with @ = b = 0 is, unlike the
other cases, not a family of orbits but a single orbit all by
itself, leading to a new possible FOS. For this reason we call
it an exceptional orbit. As representative element on this
orbit we can take the combination J, + K, which in the
(4 ,0) representation is the nilpotent matrix

J2+K,=—%az—%al=(g (1))
The one-parameter subgroup generated by J, + K, leaves
invariant a lightlike vector and a spacelike vector, which
explains the notation &y, = &%. The stability group of
J, + K, has a more intricate structure than was the case for
representative elements on other orbits. Writing N, for this
subgroup of G, it consists of all elements neG that commute
with the nilpotent matrix appearing in Eq. (3.12). We easily

(3.11)

(3.12)
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find that such an » must be of one of the two forms

6D (o 2D

where §is any complex number. Hence the subgroup N,C G
has two disjoint components, each of which is simply con-
nected. We indicate this structure of N, by writing it as the
union of the component N containing the identity and the
component V' whose elements are the negatives of those of

| N,=NUN, N=[((1) /19)}
v={7

Here N is generated by the combinations J, + K, J; — K,; it
is a two-parameter Abelian group and is in fact the subgroup
F,CG. In the two-to-one homomorphism from G to
SO(3,1), the elements neN and — neN'’ share the same im-
age, which is contained in the image of F,, in SO(3,1). We
may call the latter image F,, again (see also later), since the
homomorphism respects distinctions among elements of F,,
in G. We thus see that the exceptional orbit % can be writ-
ten as a coset space either of G or of SO(3,1) as follows:

(3.13)

(3.14)

O%~G /Ny=SO(3,1)/F,,. (3.15)

We shall deal with #* in this form as a possible internal
space Q even though there is here a departure from the state-
ment made in Sec. II that attention would be restricted to
coset spaces G /H for H a connected Lie subgroup of G. In
the present case, H = N, = NUN' is not connected. How-
ever, one should also bear in mind that in dealing with orbits
in G one is really tackling a problem at the level of SO(3,1)
rather than truly at the level of G. We may at this point
summarize the results of this section thus far: a detailed anal-
ysis of the structure of orbits in G and the use of the KKS
theorem, shows that. the only possible FOS’s are the two
coset spaces, G /F,and G /Ny,=SO(3,1)/F,,, or other coset
spaces G /H, which may be covering spaces of one of the first
two. Any orbit £, with €,#0, ., witha>0, or 7,
with 5> 0 can serve as a model for the coset space G /F;
while the exceptional orbit &, is a model for the coset
space G /N,.

The topological structures of these two coset spaces are
disclosed by use of the Iwasawa or KAN decomposition
theorem, which states that any element g of a semisimple
noncompact Lie group G can be uniquely expressed as a
product of three elements: g = kan, where k belongs to a
maximal compact subgroup K, a to an Abelian subgroup 4,
and n to a nilpotent subgroup N of the full group. For
G =SL(2,C): K =SU(2) generated by J; 4 = B(3) gener-
ated by K;; and N = F,, generated by J, + K, J, — K. To-
pologically, SU(2) has the structure of the sphere S, 4 has
the structure of the real line R, and N has that of the plane
RZ Thus as is well known SL(2,C) has the topology of
S3X R 3. Now the first coset space found above in the search
for FOS’s is G /Fy, = SL(2,C)/U(1) X B(3). Since SU(2)/
U(1) has the structure of the two-sphere S %, we see that the
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coset space G /F, has a structure indicated by
G/Fy=SU(2) XB(3) XN /U(1)XB(3)
=~(SU(2)/U(1))XN=S*XR?. (3.16)

Each of the nonexceptional orbits has exactly this topologi-
cal structure.

To deal with the exceptional orbit &, = %, which
was shown to be the coset space G /Ny=S0(3,1)/Fy,, we
make a few preliminary remarks regarding the Iwasawa de-
composition for SO(3,1). Here the maximal compact sub-
group Kis SO(3), theimage of SU(2) in G under the two-to-
one homomorphism G—-SO(3,1). However, under this
same homomorphism, the subgroups4 = B(3) and N = F,
in G have images in SO(3,1) which are “as large as” the
originals. The homomorphism maps distinct elements in 4
(resp. N) into distinct elements of SO(3,1). For this reason
we may without fear of confusion refer to the homomorphic
images of 4,NC G by the same symbols 4,N but now under-
stood as subgroups in SO(3,1). With this understanding, we
have SO(3,1) =80(3) X4 XN. It now follows from Eq.
(3.15) that the topological structure of the exceptional orbit
&* is given thus:

% =~80(3,1)/N=SO(3) X4 XN /N=SO(3) XR.

(3.17)

This is distinct from the structure of any nonexceptional or-
bit.

Now the KKS theorem allows a coset space G /H, which
is an FOS to be either an orbit or a covering space of an orbit
in G. One can convince oneself by simple arguments (here
omitted) that in the case of any nonexceptional orbit viewed
as G /F,, there are no other coset spaces G /H that are cover-
ing spaces of G /F,. However, the situation is different in the
case of the exceptional orbit &, = &”, which, viewed as a
coset space of G, has the structure G/(NUN"’). Since the
subgroup involved here is made up of two disjoint compo-
nents, we can see that there is another coset space G /N, using
the connected subgroup N, which is “twice as big as” &,
and covers the latter twice, since N is “half of” NUN'. Thus
we have a third candidate for an FOS, namely Q = G /N with
the topological structure SU(2) XA ~S3XR. We repeat
that this is not an orbit in G but a twofold covering of the
exceptional orbit Z,. (One can convince oneself that no
further coverings are possible.) This coset space G /N is pre-
cisely the internal space corresponding to the use of a Major-
ana spinor as an internal variable, which appears in the work
of Ref. 15. This fact is easily established. From the Iwasawa
decomposition for G, it is clear that each coset in G with
respect to N has a unique representative element of the form
ka where keSU(2) and aed. As a matrix, this coset repre-
sentative, or “coordinate” for G /N, is

ka—-( A ,u)(r 0 )_( Ar ,u/r)
T \—pur A N0 1) N—purr Al
AP+ p*=1, r>0. (3.18)

Evidently this matrix is completely determined by its first
column ( _7%,), which is not identically vanishing. Now the
action of an element geG on G /N causes a change in the coset
representative, which amounts to this column vector trans-

2913 J. Math. Phys., Vol. 27, No. 12, December 1986

forming as an undotted spinor. This is because removal of a
factor belonging to NV on the right-hand side of an element of
G -does not alter the first column of the corresponding two-
dimensional matrix, since elements of N are upper triangular
matrices as shown in Eq. (3.14). To make contact with the
variables of the spinor model, we write ( _ f,’.,) in the form
4% i) by identifying
41 +ig, =2V %A, py—ip,= —2V§u*,
Vo=r/4=1(qi +4 +0 +03) .

To say that ( _%%.) transforms as a two-component spinor
with respect to G is then to say that

9

. L 3.20
Y » ( )
P2

is a real four-component Majorana spinor. Hence the space
of Majorana spinors with ¥,> 0 is diffeomorphic to the
space of nonidentically vanishing (},0) spinors and this is
the same as the coset space G /N. A global coordinate system
on G /N is given by ¥, and as shown in Ref. 15 the fundamen-
tal canonical PB’s

{qaapb}=6ab’ {qa’qb}:‘{pa’pb}:O’ ab=12
(3.21)

(3.19)

are G invariant.

To summarize the results of this section, all possible
internal spaces Q = G /H were divided into two types name-
ly FOS’s and SOS’s. With the help of the KKS theorem and a
detailed study of the adjoint orbits in G, three possible FOS’s
have been found, namely the coset spaces G /F,, G /Ny, and
G /N = G /F, The last of these has been recognized as the
internal space of the spinor model, which was earlier devel-
oped as a result of a study of the new Dirac equation.?” In the
rest of this paper we study the first two FOS’s corresponding
to any nonexceptional and the exceptional orbit in G, respec-
tively, as possible internal space for a classical particle.

IV. SYMPLECTIC STRUCTURES ON THE FOS’s

On each of the two coset spaces G /F, and G /N, we wish
to define a G-invariant symplectic form whose existence is
guaranteed by the KKS theorem. If @ is this form, by suit-
ably inverting it one obtains G-invariant PB’s among func-
tions on the concerned internal space. If furthermore w is
exact, i.e., = d6, where the one-form 8 appears in (local)
coordinates g” for Q as

6=f(q)dq , (4.1)

then the total Lagrangian for a particle with internal space Q
has a leading term

ZLo(a:9) =19, (4.2)
linear in ¢, and in the rest of the Lagrangian there is no ¢
dependence. A reparametrization invariant contribution to
the action is given by .&, by itself.

In our problem it is physically more transparent and
convenient to begin by defining manifestly G-invariant PB’s,
then by a process of matrix inversion arrive at @, and then
demonstrate that @ is exact. Once a suitable 8 has been
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found, its G transformation property can be directly exam-
ined. We carry out these steps in this section, firstfor @ = G /
N, and next for @ = G /F,,.

A.The case Q=G/N,

The six components of £,, can be used as an overcom-
plete system of coordinates for the exceptional orbit
Oop = O". Among them we postulate the fundamental
PB’s

{guv!gpa} = gﬂpgva - gvpgya + gyagpv - gvagpp ’

4.3)

patterned after the structure of the Lie algebra G itself.'° The
Jacobi identities are automatically satisfied. If we specify
that the §,,, themselves act as the generators of the canonical
transformations realizing G on &, we see that these PB’s
are explicitly G-invariant, and also that this is in agreement
with the transformation law (3.5) for £ under G. The con-
stancy of the two invariants %', and ¥, is consistent with
this PB structure: €, and ¥ , are nontrivial neutral elements
in this classical canonical realization of G, so the above PB
(which is in fact a generalized PB) is singular.’® The PB
between any two functions fand g on &, can be computed
from the basic ones (4.3) by using the derivation property.

For practical calculations it is convenient to deal with
the three-dimensional components § and m of §,, . The orbit
& o is then defined as

Ooo =1(&M)|[] = |n| >0, En =0},
and the PB’s (4.3) read

{é‘j’gk} = — {”Tj»"]k} =51k1§1s {§ja77k} =€ -
(4.5)

If some local choice of independent variables among &, % is
represented by ¢”, r = 1,...,4, then the PB of any two func-
tions &4 is, again locally, expressible in the form

— oy O 08
{f(@e@}=0"() o I
The inverse (w,, (¢)) of the matrix (™ (¢g)) gives the local
components of the symplectic two-form . The KKS
theorem assures us of the existence of w,, (¢) and also that it
can locally be written as

_96,(¢9) 36,(g)

- or o7

The question is whether 6, (¢)dq” is giobally defined.
As a first step towards the choice of ¢’s, we switch over

to a new but still overcomplete system of variables § and

f#=m/|n|. The PB’s among these have the somewhat
simpler form of the E(3) algebra as compared to (4.5)>:

{gj’fk}‘:fﬂdfn {gﬁﬁk}: jklﬁl’ {ﬁj:ﬁk}=0~

(4.4)

(4.6)

@, (q) (4.7)

4.8)
Choosing the ¢” on a suitable portion of & as
ql=§l9 q2=§2: q3=ﬁl’ q4=ﬁ2’ 4.9)
with £, and %), determined by
A== =952 &= — (& + E72)/7,
(4.10)
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the matrix (0™ (¢)) is
0 & 0
s | —6 0 —% 0
@)= 0 4 o o (4.11)
—f; O 0 0
The local components of the symplectic two-form are ob-
tained by inverting this matrix:
0 0 0 —1/4)5
0 0 /7, 0
@@=t o 1m0 e
1/ 0 —&/M Y
(4.12)

Taking 6, = 8, = O as a trial in Eq. (4.7) we find we can get
a solution

93=§2/ﬁ3’ 0, = “51/773- (4.13)
Hence the local one-form @ can be taken to be
0=206,(q9)dq" = (§; df), — £, d72) /%5 . (4.14)

The local representability of w as d6 is of course guaranteed
by the closure of @ and Poincaré’s lemma. But now switch-
ing back to the variables §, n we see that 9 can be simplified
to

0 = €ubyme dmi/Im|*, (4.15)

which is globally defined on &, since 4| > 0. Thus we es-
tablish that the two-form @ on & is indeed exact.

Fortunately the G-invariance of @ passes over into the
G-invariance of 6 as well. 6 is manifestly SO(3) invariant.
Under an infinitesimal pure Lorentz transformation with
velocity v, |v| €1, the changes in § and v are

E=v,m, o= —v,§. (4.16)

The change 56 in 8 can now be easily calculated and shown
to vanish since both ¢, and ¢ , vanish. Thus we verify that
in the case of the coset space @ = G /N, @ is exact, and @ is
globally defined and G-invariant.

B. The case Q=G/F;

Any nonexceptional orbit in G can be used as a model
for this Q. It will soon become evident that the choice
Oop =07} for any b>0 is particularly convenient, so we
make this choice. In place of Eq. (4.4) we now have

oo =LEM| M*=£7+5>% En=0}. (417)
Thus m is nowhere vanishing over &, , while § may vanish.
Apart from this difference in the allowed pairs (€,q) in &,
as compared to &, all of the previous equations (4.3),
(4.5)-(4.15)] remain valid, and in fact the expression
(4.15) for @ is globally well-defined over &, since the de-
nominator never vanishes. Thus the exactness of @ in the
present case is again established. When we examine the be-
havior of @ under G, however, we do find a difference. While
@ is again manifestly SO(3) invariant, under a pure Lorentz
transformation it changes by an exact piece:

8560 =d( —2b>n/|n*) . (4.18)
This is consistent with the G-invariance of w.
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In both cases of FOS’s examined in this section, there-
fore, the same formal expression for the one-form @ in terms
of § and m is valid, and can be used in the construction of the
corresponding Lagrangians. The essential topological differ-
ences between G /N,y and G /F, reside in the ranges of § and q
in the allowed pairs (§,7).

V. LAGRANGIANS AND DYNAMICS FOR PARTICLES
WITH FOS

We consider now the problem of constructing the most
general Lagrangian for a classical indecomposable object
whose internal space @ is one of the two FOS’s G /N, or
G /F,, consistent with the conditions spelled out in Sec. II. In
either case, the internal variable is an antisymmetric tensor
£, or (§m), withsuitable values for €' and % ,. Space-time
translation invariance for the free system forbids the appear-
ance of x* in the Lagrangian, and Q being an FOS deter-
mines also the leading term linear in §,, , namely, the expres-
sion (4.2). For both possible FOS’s, therefore, we have the
general form

L) = L&) + L (%),

ZLo(6:6) =np0/|nl*, (5.1)
for the total Lagrangian. From the previous section we know
that .%o(£,€) is invariant or quasi-invariant under the ac-
tion of an infinitesimal Lorentz transformation, depending
on whether Q = G /N, or Q = G /F,, respectively. We now
impose on .#”’ the remaining conditions from Sec. II: (a) it
must be Lorentz invariant, and (b) it must be homogeneous
of degree 1 in the x*. These conditions determine the most
general form possible for .7

f’(.x'?,g)=(—J'62)1/2f("'§"')s (5_2)
where ---{--- are a complete independent set of Lorentz
scalars formed out of ¥ and §,,,, with the property of being
homogeneous of degree zero in the x*, and fis an arbitrary
real function of the £.

We shall make the physical assumption that in all mo-
tions of interest, the velocity vector * is positive timelike, so
that x> < 0. The number of independent ¢ ’s can then be im-
mediately determined geometrically, and turns out to be just
one for either choice of @. The argument is as follows. Since
x* is timelike, one can always go to its rest frame where it

- takes the form (/ — xZ, 0). Ifin this frame one can construct
a complete set of SO(3) scalars out of £,,, then by suitably
rewriting them in a manifestly Lorentz invariant way and
also imposing the homogeneity requirement with respect to
X*, acomplete set of { s is obtained. Now, of the three SO(3)
scalars |§|, |n|, and &-m that can be formed out of £,,,,, only
one is independent, since € | and % , have definite numerical
values, and this one can be taken to be |q|%. The Lorentz
invariant expression that reduces to this in the rest frame of
X* is

&= (£, (-%%),
and is the only ¢ variable for either choice of Q.

By expanding the square in Eq. (5.3) we can write { as

&=1, )%/ (—x),
t,uv(é.) =§pp§vp'
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(5.3)

(5.4)
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We thus see that for either choice of Q the nontrivial cou-
pling between internal and space-time variables is achieved
as follows: a symmetric second-rank tensor ¢,,,, (£) is formed
on @, and by contraction with ¥* x* and imposing the homo-
geneity requirement the variable ¢ is obtained. Then the
most general Lagrangian consistent with all of the require-
ments is

L(REE) =Eman/|IM*+ (=3)2F (),

and involves one arbitrary real function of one real argu-
ment. While this situation is common to both choices of Q,
one is naturally led to ask whether a simpler choice of § could
be made, i.e., whether for instance a four-vector ¥, (§)
could be defined on Q in place of the tensor ¢,,,, (£), so that by
contraction with a single factor x* a more elementary §
could be obtained. We shall show that this is in fact the case
for @ = G /N, while such a possibility does not exist in the
other case Q = G /F,. This again points to the exceptional
nature of the FOS & .

On the orbit & the value of £, at the representative
pointJ, + K, £ & say, is

£ =(0,1,0), 0?9 =(-100). (5.6)
A generic point £, arises from £ ©© by a suitable SO(3,1)
transformation A:

S = ASPAELD. (5.7)
Now it is well known that the stability group of the point £ ©,
generated by J, — K, and J, + K, also leaves invariant the
lightlike four-vector ¥ > with components

Vi =(-100,1). (5.8)

At £© the second-rank symmetric tensor ¢ () of Eq. (5.4)
can be factorized in terms of ¥ (:

1, () =tQ=VOy©®. (5.9)

Just as for £ in Eq. (5.7), the tensor £(£) is related to @ by
two factors of the Lorentz matrix A. Combining this fact
with the decomposition (5.9) valid at £ @ we get

ty.v (é‘) — AMpAvatpa (§ (0))
=APATVOVO
=V, V.,
V. = A#”V,(,o’ .
It is understood here that the element AeSO(3,1) is such as
would carry £ @ to £. Now the use of the notation ¥, (£) is
justified only if in the last line of Eq. (5.10) the use of any A
carrying £ ‘¥ to £ gives the same result for ¥, (£). But this is
indeed so, since as noted above the stability group of V' {* is
not smaller than that of the point £ ®. This assures us that
V, (£) is indeed a function of & alone, as implied by the
notation. A direct definition of ¥, in terms of £ and a check
of its vector nature is also possible. Comparing the two rep-

resentations (5.4) and (5.10) of z,,, remembering
€= €, =0and the values (5.8) of ¥, we find

Vol§) = — |§] = =[],
V(&) =E /I .
To verify that ¥, (£) behaves as a four-vector when £ trans-

(5.5)

(5.10)

(5.11)
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forms as a tensor, we first extend Eq. (4.16) giving the
change in § induced by a pure infinitesimal Lorentz transfor-
mation to expressions in which an infinitesimal spatial rota-
tion is also included:

SE=u, E+v,m,
Mm=um—v,§, (5.12)
|u|,|v|€1.

It then follows from Egs. (5.11) and (5.12) and use of
%, = €, =0 when necessary that
8Vo(8) =vV(5),

SV(£) =u, V(E) +vF(),
which are just the changes induced in the components of a
four-vector by the infinitesimal Lorentz transformation
(w,v).

It is worth emphasizing at this point that while a four-
vector V¥ (£) can be defined as a function of £, on 7, we
cannot invert their roles and express £,,,, as a function of V*.
This is because the stability group of £ (%’ is smaller than that
of ¥, and similarly for £,, and ¥, (£). Thus it is the ten-
sor £,,, that is the primitive object while V), (£) is a derived
quantity on & .

An essential simplification in the choice of the variable ¢
is thus possible when Q = G /N,,. It is possible to construct a
(positive lightlike) four-vector ¥* (£) on Q and in place of
Eqs. (5.3) and (5.4), we can define

(5.13)

=V, (E)x+/(—x)'? (5.14)

and use this as the argument of the function fin Eq. (5.5).
The Lagrangian (5.5) is then identical in form to the one
developed in Refs. 15 for the spinor model, except for the
replacement of .%, (£,£) by another ., appropriate for
spinor internal variables. Of course, while ¥, and the inter-
nal angular momentum S, are both bilinear in the compo-
nents of a Majorana spinor in the spinor model, here V), is a
function of £,, and S, coincides with £, . This extremely
close relationship is due to the FOS G /N being a twofold
covering of the FOS &, = G /N,. Furthermore, if one re-
stricts attention to nonspinorial quantities, the dynamics
and constraint structure are also identical in the two cases,
and this is in particular so for the mass-spin relation and for
the space-time trajectory. These aspects will therefore not be
discussed any further here.

Turning to the other FOS @ = G /F,, a corresponding
simplification is not possible for the following reason: there
is no nonzero four-vector whose stability group is at least as
large as F;,. Therefore, the tensor z,,, (£) is the simplest ob-
ject available for combining with x* to form a Lorentz scalar
§. We therefore call this model with the first-order internal
space Q = G /F, the symmetric tensor model (STM) and go
on to discuss its constraint structure and Hamiltonian dy-
namics.

The Lagrangian for the STM is given in Eq. (5.5), with
¢ defined in Egs. (5.3) and (5.4). In order to give the equa-
tions a neat appearance, we introduce the following two
four-vectors:

W=3/(—, U, =4, (5.15)
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obeying
U>=¢, wU=0. (5.16)

The 12-dimensional phase space for this problem is
T*.4 X Q,for whichx*,£,,,and p, can be used as an over-
complete system of coordinates. The invariants relating to
&,, have values €, = — b? &, =0. The momenta p, are
conjugate to the x* and the basic nonvanishing PB’s are as in
Eq. (4.3) together with

{x*p} =6 . (5.17)

Consistent with the behavior of .# under infinitesimal Poin-
caré transformations, the conserved generators of & are

Pr=p’, J,, =x,p, —X,p, + &, - (5.18)

To relate the phase space momenta p, to Lagrangian
quantities, we calculate the derivative of . with respect to
x* and get

Pu=Q0f —fu, =2 ¢,U". (5.19)
Here the prime on f denotes the derivative with respect to the
argument { (which is omitted). The Pauli-Lubanski vector

W, and the two Casimir invariants for the Poincaré algebra
turn out to be

W# = i epvpap W= (2§f, _f)é—zvuv;

P2=p2=4§(§_b2)f12__f2;

W2=({—b%) 24 Sf -1).
Here, £ %, = 1¢€,,,,£"" is the dual to £, and apart from put-
ting in the values of €, and ¥, where necessary, several
identities obeyed by antisymmetric tensors have been used.?*
We see that for a given choice of the arbitrary function fin
the Lagrangian, both P? and W? are functions of {. Thus
eliminating £ we get a functional relationship between P2 and
W2, which is the phase space constraint resulting from the
reparametrization invariance of the action. We express this
relation in the form

p=p*—a(W?)=0. (5.21)
This is the sole primary constraint in the theory, hence it is
first class, which is as it should be since it generates repara-
metrization (gauge) transformations. The Hamiltonian is
an arbitrary multiple of the constraint @, involving a La-
grange multiplier v°:

W= —1,

(5.20)

H=vp. (5.22)
It leads to the equations of motion

P = 0,

x*=2(p* +a'E¥W,), (5.23)

§;.w = 2va,dxmpr a(gapfﬂv _gavgﬁp) )

where the prime on a denotes the derivative with respect to
the argument W2 (which is omitted). In solving these equa-
tions we can take advantage of the fact that p, and W, are
both conserved, so the factor a’ is also constant with respect
to 5. Therefore the only explicit appearance of s is through
the Lagrange multiplier v. We begin by writing the equation
of motion for £, in the following form:

é.-pv = Za'v(s) (w,u/lé—/lv + a)vlé—/ul) ’
o Wepe.

uv = eyvpa

(5.24)
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Since the antisymmetric tensor w,,, is constant with respect
to s, this way of writing the equation of motion reveals that
£, evolves with respect to s by being subjected to a continu-
ously changing element on a one-parameter subgroup of
SO(3,1), the one with w,, as generator. The rate at which
this subgroup is traversed is determined by the Lagrange
multiplier v. Thus we can write the solution for the equation
of motion for £, if we can write down a closed form expres-
sion for a general element on this one-parameter subgroup.
For a variable parameter 3, let

A(¥) = exp(¥w)eSO(3,1) . (5.25)
The two invariants associated with @ have values
0, = —p*W?*>0,
jore, P (5.26)

€po @0 = 0.

Therefore, as a result of standard identities for antisymme-
tric tensors,?* w as a generator matrix in the vector represen-
tation of SO(3,1) obeys the polynomial equation

0= — Ko, k=(—-pWHV?50. (5.27)
This property, together with the result for »?,
(@*)*, =, 0P,
=p*W, —pP’WEW, — WiPp,, (5.28)
allows evaluation of A (¢) in closed form:
AGs, = [1 " sin k¥ o+ 1 _chK¢w2]”v
K K
=cos kY & + sin x € o WeD°
+ (1 — cos x¥) ( W;}’:," +p%) . (5.29)

The geometrical interpretation is aided by the properties

AW p"=p' AP W =W, (5.30)
Thus in the rest frame of p* , A (¥) is a purely spatial rotation
around W as axis. The equation of motion for £,,, can now be
solved by making ¢ a function of s obeying the appropriate
differential equation:

§47(s) = AP ()}, Al¥(s))",£7°(0) ,

P(s) =2a'v(s),
¥(0) =0.

(5.31)

On using this result for £,, (s) and also the second of
Eqgs. (5.30), the equation of motion for x* can be simplified

to
cor-r 4()

7

+ 2O Ayor,evom,. 53
This can be easily integrated since the explicit form of A(¢)
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is available in Eq. (5.29):
x*(s) = x*(0) + p*y¥(s)/a’

+ [¢(s)-1 4 L= coskils) °‘f2"¢(s) ® (5.33)
+ ) —Snkh () 2" w0y, .

i« p
Thus we see that the space-time trajectory is influenced by
the internal variables £,,, even for the isolated system, and
x* (s) follows a helical path in space-time.

Up to this point the reparametrization invariance has
been maintained and the choice of v(s) left free. If we now
for instance choose the evolution parameter s to be physical
time by imposing the gauge constraint

(5.34)

on the one hand v(s) gets determined and on the other hand
the two constraints @, y form a second class set. This allows
passage to a system of Dirac brackets (DB)® and explicit
elimination of two phase space degrees of freedom. For in-
stance the remaining physical phase space variables can be
takentobex, p, and £, subjectto €, = — b? €, =0.Itis
then easily seen that the DB’s among the x; vanish,

{xx}*=o0, (5.35)

which is thus a property of the STM shared with the spinor
model."®

¥r=x"—s=0,

VI. CONCLUDING REMARKS

In this paper, the first in a series devoted to a systematic
study of classical relativistic particles with internal struc-
ture, we have described the physical ideas guiding our study,
and then dealt in detail with internal structures correspond-
ing to first-order spaces. These are the cases where, in the
Lagrangian formalism, the internal variables can be de-
scribed by a first-order dynamics. After determining the pos-
sible FOS’s, the symmetric tensor model based on a generic
orbit in G as the internal space was examined in detail. It is
interesting to make the following remarks concerning this
model and its relation to the spinor model or the model based
on the exceptional orbit as internal space. In any of these
models, there is one arbitrary function of one argument
which appears in the general Lagrangian, which ultimately
determines the functional relationship between mass and
spin characteristic of the model. Let this Regge relationship
be written in the form

m=pf(s), (6.1)

with m the invariant mass y — P2, and s the magnitude of
the intrinsic spin  — #W?2/PZ. One can ask whether, if this
relationship alone were given, one would have a clue as to
which internal space was involved. It is plausible that this is
not so, since in any one of the models the input arbitrary
function in the Lagrangian could always be so chosen as to
lead to the preassigned Regge relation. However it is inter-
esting that by coupling the system to an external electromag-
netic field and calculating, for example, the magnetic mo-
ment for particles on the Regge trajectory as a function of the
spin, this “degeneracy” can be lifted. For both the spinor
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model and the model with Q = G /N, (the case of the excep-
tional orbit), the dependence of the magnetic moment on
spin is determined in terms of the Regge relation as'®

dInpB(s)
dlns

However in the case of @ = G /F, as internal space, realized
as in this paper by using the orbit &, in G where b> 0is an
additional parameter, the magnetic moment has been calcu-
lated elsewhere® and turns out to be

b2+5*> dInB(s)
§? dins

This is both reassuring and intriguing for the following rea-
sons. On the one hand it is reassuring because it is possible to
distinguish between the different internal spaces on a phys-
ical basis. It is on the other hand intriguing because the inter-
nal space Q = G /F, does not vary in any intrinsic sense as b
varies, therefore the result (6.3) shows a dependence on the
particular way in which the given internal space has been
realized. This fact suggests the following question, which is
worth pursuing: if the same internal space Q = G /F, were to
be realized as one of the orbits £, or &, and this must
certainly be possible, how is the result (6.3) altered?

In the next paper in this series we take up the study of
SOS’s. The number of these is quite large, and we shall have
to develop special methods to handle them in a systematic
manner.

gs) = (6.2)

(6.3)

g(s) =

APPENDIX: LIE SUBGROUPS OF G

We list here the connected Lie subgroups H of
G = SL(2,C), up to conjugacy.'” The extreme cases F, = G
and F,5 = {e} can be omitted. The rest, ranging from F, to
F,,, are given in opposite order, since that is the order of
increasing dimension # of the subgroup. The usual notations
for generators of SU(2) and of pure Lorentz transforma-
tions areJ; and K;; respectively, while the notation J, will be
used for the combination
J, =singJ; +cos@K;, O<@<n/2 or w/2<p<m.
(A1)

For each subgroup listed, both the corresponding collection
of matrices in the defining (} ,0) representation of G, and the
infinitesimal generators, are given.

Forn=1,

1 r
F,, = all matri ( ),
1+ = all matrices 0 1

— w <r<w, generator=J,+K,;

F13 = A4 = all matrices (e O_D) ’
0 e

— w0 <U< 0, generator =K, ;

. (2 0
Fy, = U(1) = all matrices 0 e-®)

0<0 <2, generator =J,;

eve“’ 0
F$, = all matrices ( ,,,,) ,
0 e~

— o <VU<w, @ fixed, generator=1J, .
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Forn =2,
F,, = N =all matrices ((1) :+ ’s) ,

— w<rS<w, generators=J,—K,,J,+K,;
ev+i8 O
Fo=U(1)4 =all matrices(o e—v—ie)’
— o <U< w0, 0<O<2m generators=J;, K;;

e’ r
Famall masees( ),
s =a marlces0 A

— o0 <V < o0; generators =K,,J, + K.
Forn =3,
Y or4is
F, = AN = all matrices (; j_u ) ,
— o0 <WS< w,
generators =K, J, — K,, J, + K, ;

i0 '
Fg= U(1)N = all matrices (g :j—i;s) ,

— o <hS<w, 0<0<2rm,

generators =J,, J, — K, J, + K ;

— ve'®

ve® r 4 s
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] e
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2
A*)’
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A
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} A
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F, =U(1)AN = all matrices 0 ol

— v —

e
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generators = J,,K,, J, — K, J, + K; .
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Kepler problem with a magnetic monopole
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It is shown that the usual moment map J: 7 *(R*® — {0} )—s0*(2,4) of the Kepler problem can
be generalized to include the magnetic term of the Dirac monopole.

I. INTRODUCTION

The maximal dynamical group of the n-dimensional
Kepler problem (or the hydrogen atom) is well known to be
SO(2,n + 1)."® So we have an Ad*-equivariant moment
map J: T*(R" — {0})—so0*(2,n + 1),%” whose Hamilto-
nians are given by

Jok =XpYi — X1V,
Lk =XVks
Ao= —x(*— 1),

Ay =£(J’2 — Dx, — (xp)yi, (L1)
By= —x(’+ 1),

B, =10 + Dx, — {x)p

D= (xy),

where y> = (y,p), and x = {(x,x)"/%, hk=1,...,n. The x,
and y, are canonical coordinates on T*(R" — {0}), which
is the phase space of the KP. The nonlinear action of
SO(2,n + 1) on T*(R" — {0}) can be linearized by means
of the double covering Spin(2,n + 1) of the pseudo-orthogo-
nal group.® In the physical case, i.e., n = 3, we have the iso-
morphism Spin(2,4) = SU(2,2) and the linear symplectic
action of SU(2,2) on T,/ =~induces the moment map (1.1)
through the Kustaanheimo-Stiefel (KS) transforma-
tion,>'%:

(1.2)

Here T is the space of the null twistors, i.e., the elements
¥ = (%), zeC* — {0}, weC? such that

x, =2'0yz, y, = Im(Zlo,w)/z%2.

P EY=0, (1.3)
where
& = (2 00"), (1.4)
0

and o, are the Pauli matrices. The equivalence relation ~ is
defined by ¥ =~ ¢exp(i6).

Thefirst of Eqs. (1.2) shows that the KS transformation
is based on the Hopf fibration: § 3—S 2. Since this fibration is
not trivial, on the basis of Theorem 2 below, one expects that
the manifold 7*(R? — {0}) is equipped with a symplectic
form differing from the canonical one by a magnetic term.
Really, Barut and Bornzin'? showed, by a “direct, though
laborious, calculation” that (1.1) can be generalized as fol-
lows:
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J=xXm—ux/x, L=xm,

Ay= — (7 — 1) — L (u*/x),
2
A=(7 - Dx — (xm)w +iJ+i'u—x,
x 2 x? (1.5)

By= —kx(7+1) — %(,uz/x),

2
B=l(P+x—(xmmt+ Ly Ll
2 x 2 x?

D =xmw
where now the 7, are not canonical coordinates since
{ﬂ'h,ﬂ'k} = p€; (X,/%). (1.6)

Here {.,-} are the Poisson brackets, and u is a parameter
(magnetic charge) whose vanishing implies that (1.5) re-
duce to (1.1).

The aim of this paper is to recover in a natural way the
moment map (1.5). In Sec. I we shortly recall two theorems
on the reduction of the symplectic manifolds. In Sec. III we
show how the moment map (1.5) is obtained considering the
linear symplectic action of U(2,2) of T,, /=, where T, is the
space of the twistors of constant modulus z.

Ii. REDUCTION OF A SYMPLECTIC MANIFOLD

This first theorem is due to Marsden and Weinstein. '

Theorem 1: Let (P,w) by a symplectic manifold on
which a Lie group G acts symplectically and let J: P—g* be
and Ad*-equivariant moment map. Assume ueg* is a regu-
lar value of J and that the isotropy subgroup G, acts freely
and properly onJ ~'(u). Then P,: =J ~'(1)/G,, is asym-
plectic manifold with a form @, such that Thw, =ito,
where 7,: J ~ ! (u)—P, is the canonical projection and i, :
J ~'(u)—Pis the inclusion. Let H: P+—R be G invariant: it
induces a Hamiltonian flow on P, with Hamiltonian H,
satisfying H, om,, = Hoj,.

In a case, the reduced symplectic manifold P, is identifi-
able more exactly. In fact we have the following theorem,
due in this form to Kummer.'

Theorem 2: Let P be a cotangent bundle 7*M and G a
one-parameter Lie group acting freely and properly on M.
Let Mi—»N = M /G be the induced principal fiber bundle and
a be a connection one-form on it. The reduced manifold P,
is symplectomorphic to T*N endowed with a symplectic
form given by the canonical one plus a “magnetic term”
ut¥ da (where 7 is the canonical projection T *N—N).
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Ili. KEPLER MANIFOLD WITH A MAGNETIC MONOPOLE

Let & be a matrix representation of the U(2,2)-invar-
jant Hermitian form. We choose a basis in C>* such that &
has the form (1.4). Here C*? is equipped with a natural
symplectic form o = d®, where

O = (i/2)(Y'¥ dy — dy' &), (3.1)
and yeC2>2. The linear action of U(2,2) on C>? is manifestly
symplectic. The associated moment map: C>2—u*(2,2) is
easily found to be

Yt

o W 22

W'E = l(ww'r wz*)’
where we set ¢ = (%), 2#0. The action of the center U(1) of

U(2,2) is free on (C* — {0}) ® C? and induces the reduction
of any submanifold 7, of twistors of constant modulus

VEY=p (3.3)
to T,/~. We will prove that the moment map: 7,/
~r—su*(2,2) is given just by (1,5). To this end, choose a
system of local coordinates on T,/~ as follows. Let
E=4(x00+x0), and II=(u/x)o,+ wo. Being
det = = 0, we can define ='/2 as an element of (C2 — {0})/
~ such that 2'/22""/2 = =, The x and = are local coordi-
nates on T, /= . Indeed, setting

51/2
¥= (iIIE”Z)’

Eq. (3.3) is identically satisfied. The pullback of ® gives

(3.2)

(34)

O = mdx + uAd, (3.5)
where A is a one-form such that
dA = thi (x‘/xs)dxh dxk. (3.6)

Therefore the symplectic structure on 7, / = is given by

Zuxi} =0, {xpm} =8, {mnmi} = pepaxi/x>.
(3.7)

It is now straightforward to verify that composing (3.2) and
(3.4) we obtain (1.5).
We have accomplished the reduction process following
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Theorem 1. Alternatively, we can follow Theorem 2. In this
way, we get a better insight as to the role of the one-form 4.
To this purpose, let M be C2 — {0} = R* — {0} and (z,w)
coordinates on (C? — {0}) ® C*> = T *M. Wehave the action
of U(1) on M given by

2z exp(iB /2), (3.8)

and we can apply Theorem 2. Regard M as R™ X .S ? so that
the U(1)-action on M gives an induced action on S 3; its quo-
tient is S2 = CP'. Thus N = CP' XR™*. As is well known,
this principal U(1)-bundle Mi—N has a natural connection
one-form « given by

a = Im(z' dz)/ztz. (3.9)

When restricted to S (i.e., z'z = 1), a is the Kaehler one-
form onCP’. The one-forms & and 4 represent the same con-
nection. The action of U(1) commutes with that of SU(2,2)
and thus its Hamiltonian is constant. Parametrize z in terms
of the spherical coordinates (7,6,¢) on R*> — {0}, getting

. (J? cos (6/2) expli[ (¢ +5)/2]) ) (3.10)
\rsin (6/2) exp (i[( — ¢ +B)/2])

The angle Sis an “ignorable” coordinate for all the Hamilto-

nians of the SU(2,2)-action and therefore the conjugate mo-

mentum is a constant ( = u). It is easy to verify that the

momentum map 7 *(R> — {0} )—su*(2,2), given compos-

ing the lift of (3.10) with (3.2), gives just (1.5), as required.
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Quantum kinematics of the harmonic oscillator
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The formalism of non-Abelian quantum kinematics is applied to the Newtonian symmetry
group of the harmonic oscillator. Within the regular ray representation of the group, the
Schrédinger operator, as well as two other (new) invariant operators, are obtained as Casimir
operators of the extended kinematic algebra. Superselection rules are then introduced, which
permit the identification (and the explicit calculation) of the physical states of the system.
Next, a complementary ray representation, attached to the space-time realization of the group,
casts the Schrodinger operator into the familiar time-dependent space-time differential
operator of the harmonic oscillator and thus, by means of the superselection rules, one obtains
the time-dependent Schrodinger equation of the sytem. Finally, the evaluation of a Hurwitz
invariant integral, over the group manifold, affords the well known Feynman space-time
propagator (¢',x'|t,x) of the simple harmonic oscillator. Everything comes out from the
assumed symmetries of the system. The whole approach is group theoretic and “relativistic.”
No classical analog is used in this “quantization” scheme.

I. INTRODUCTION

This work concerns non-Abelian quantum kinematics,
and arose in the context of an undertaking to interpret the
quantum theory of symmetries as the cornerstone of quan-
tum dynamics. In a previous paper’ (hereafter referred to as
paper I) a kinematic formalism has been proposed rather
briefly, which one obtains from the regular representation of
a Lie group. This formalism was suggested to the author by
Weyl’s kinematic approach to the group of space transla-
tions? and, somehow, constitutes a direct generalization
thereof. In effect, its main feature consists in the replacement
of the essential parameters ¢°, @ = 1,..., r, of a non-Abelian
Lie group, by commuting Hermitian operators Q¢ which
act within the carrier space of the regular representation
(and may be interpreted as generalized “position” operators
of the group manifold). In the current applications of Lie
groups in quantum mechanics one treats the parameters as ¢
numbers while, of course, the generators P, (say) of the
relevant unitary representations are Hermitian operators by
their own right. The only exception to this standard proce-
dure is precisely the group of space translations, which is
usually quantized in a complete manner (i.e., one introduces
Cartesian momentum and position operators), and whose
regular representation thus plays an outstanding role as the
“coordinate representation” of wave mechanics. According-
ly, one expects that the formal features of non-Abelian quan-
tum kinematics should also arise from a complete group-
quantization scheme. As was shown in paper I, this group
quantization procedure (i.e., g°— Q@ “) leads to explicit gen-
eralized commutation relations for non-Abelian dynamical
variables,” as well as to generalized Heisenberg equations of
“motion” for the parameter-dependent operators. In this
way one treats all dynamical variables as ¢ numbers that
stand on the same footing, in accordance with the demands
of relativity theory in general. Therefore the kinematic for-
malism sketched in paper I may afford an essentially new,
intrinsically relativistic, approach to quantum mechanics,
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which would be radically different from the three current
mathematical formulations of modern quantum theory.*

Following this trend of ideas, it seems possible to consid-
er quantum mechanics as a theory of physical symmetries,
which can be suitably formulated in the mathematical lan-
guage of group theory, without recourse to the analytical
models used in classical mechanics. This means that one
should try to withdraw the use of classical analogs in quan-
tum theory, as far as possible, at least as a matter of principle.
In effect, this attempt cherishes the idea that canonical quan-
tization is not the main point in the mathematical construc-
tion leading to the quantum model of a physical system.
Rather, the symmetry structure shown by the system should
be the only guide for having a self-consistent, complete, and
unambiguous procedure of quantum mechanical model
building. In other words, the very notion of “quantization”
should be considered under a completely different perspec-
tive, i.e., as a well defined geometric procedure that describes
the observed symmetries of a mechanical system in terms of
some physically significative representations of the corre-
sponding group. We shall refer to this particular attempt as
kinematic quantization. It is clear that such an approach to
quantum theory (if possible at all) would be an interesting
achievement for elementary particle physics. There are sev-
eral contributions following this idea in the recent litera-
ture.’

In this paper we wish to examine this matter further,
working on a concrete example of quantum kinematics.
Here we tackle the problem of determining the Hilbert space
and deducing the Schrodinger equation of the one-dimen-
sional harmonic oscillator. It should be understood from the
beginning that we shall achieve our task by purely group
theoretic considerations, since we will use exclusively the
information that the system S is invariant under a given group
G, without considering a prequantized canonical model of S.
The example we study in this article is quite elementary in-
deed. However, it is far from trivial, and we deem it as suffi-
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ciently rich for searching the huge physical possibilities of
non-Abelian quantum kinematics in general. Unfortunately,
we have to remark that, given the present stage of develop-
ment of this issue, examples of quantum kinematics are rath-
er lengthy and somehow annoying, even for such simple me-
chanical systems as the one considered in this paper.

Specifically, this paper is devoted to the kinematic mod-
el one obtains from the regular ray representations of the
Euclidean group in two dimensions. In order to arrive at an
adequate physical interpretation of the outcoming model, let
use recall the isomorphism between the Euclidean group E,
and the Newtonian group G of the simple harmonic oscilla-
tor. As is well known, G is a group of space-time point sym-
metry transformations of the equation of motion
% + w?x = 0. Indeed, the Newtonian group of this differen-
tial equation is a three-parameter Lie group that has the fol-
lowing rather simple realization in the space-time {¢,x} of
the system:

tl=t+ql’
x' =x + ¢* cos wt + ¢* sin wt, (1.1)

where ¢!, ¢°, and ¢° are three essential parameters of the
group.® Equation (1.1) entails a Newtonian transformation
of space-time coordinates for it manages time as an absolute
universal parameter.” Clearly, the change of variables
(tx) - (¢',x') has the fundamental property of leaving in-
variant the equation of motion of the system; i.e., G is the
Newtonian relativity group of the one-dimensional harmonic
oscillator. Nevertheless, it can be shown quite directly that
neither the Lagrangian nor the Hamiltonian are invariant
under Eq. (1.1). [To be sure, the Lagrangian changes by a
total time derivative, while (on the orbits) the Hamiltonian
changes by an additive constant, as it indeed must.] Hence,
the transformations stated in Eq. (1.1) can be visualized also
as an active symmetry group that changes one world line of
the system into another. Thus

x(t) =acoswt + PBsinwt-x'(t")
(1.2)

holds upon transformation (1.1), and, in consequence, a
simple calculation yields the following realization of Gin the
state space {a,B} of the classical oscillator:

— sin wq‘] [a +¢

[a’] _ [cos wq'
B'l  lsinwg' coswqg'llB+ ¢l
So we see that G is isomorphic with E,.

It is a well known fact that the full symmetry group of
the differential equation ¥ + w’x = 0 is an eight-parameter
Lie group. In effect, Wulfman and Wybourne® considered
the classical one-dimensional harmonic oscillator and found
that its symmetry group is SL(3,R). Hence, the Euclidean
group E, acts isomorphically as the Newtonian subgroup of
the complete space-time symmetry group of the oscillator.
(This is exactly in the same way as, for instance, the Galilei
group in one-dimensional space acts as the Newtonian sub-
group of the eight-parameter projective group, which leaves
the equation % = O invariant.®) For the sake of simplicity, in
this paper we disregard five extra degrees of freedom of the
symmetries of the system, and thus we assume that G=E,

=a' coswt’ + B'sinwt’

(1.3)
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gives a sufficiently complete description of the symmetries of
the harmonic oscillator. For the same reason, we do not take
into account the kinematic structure of the rotational de-
grees of freedom of the isotropic oscillator, since these would
introduce an unnecessary mathematical complication®
which, at this stage, would not help us to grasp the main
physical features of quantum kinematics.

Finally, we wish to recall the interesting discussion of
the possible kinematical groups and their classification, ex-
pressing the equivalence of a large class of frames of refer-
ences, which was presented some years ago by Bacry and
Lévy-Leblond.'® The three-parameter Newtonian group G
we are considering in the present paper corresponds precise-
ly to the one-dimensional version of the three-dimensional
oscillator group introduced by these authors. Also, the one-
dimensional Newtonian group of the simple harmonic oscil-
lator, as well as that of the forced harmonic oscillator, has
been studied (in connection with the Lagrangian gauge
problem of classical mechanics) by Lévy-Leblond!! and
Houard,'? respectively. Moreover, all the unitary contin-
uous irreducible representations of the central extension
(i.e., ray representations) of the oscillator group G can be
found in a paper by Streater.'* In summary, the group G,
which we are going to quantize in the present work, is a
familiar mathematical object indeed.'*

The organization of this paper is as follows. Section II
contains a brief review of the regular representation of the
universal covering group of G, and its ray extensions, which
is the starting point of the kinematic model. The extended
kinematic algebra of the harmonic oscillator is studied in
Sec. I11; i.e., the Lie algebra and the non-Abelian canonical
commutators as well as the invariant operators are discussed
in this section. Section IV introduces the superselection rules
attached with (and solves the eigenvalue equations of) the
invariant operators; in particular, this section is devoted to
the Schrodinger operator. In Sec. V we construct a comple-
mentary ray representation of the group, which takes into
account its Newtonian space-time realization and thus al-
lows us to calculate the (well known) explicit form of the
time-dependent Schrodinger differential operator. The
physical space-time kets |z,x) are obtained in Sec. VI by
means of the superselection rules. Thus the time-dependent
Schrodinger equation of the harmonic oscillator arises as a
purely group theoretic construct. Moreover, the space-time
probability amplitude {¢’x'|t,x) is evaluated by means of an
invariant integral over the group manifold. Section VII con-
tains some conclusions and perspectives.

Il. THE REGULAR RAY REPRESENTATIONS

We begin our work by considering the regular ray repre-
sentations of the Newtonian group of the oscillator, since
this self-contained mathematical construct offers an inter-
esting background for quantum kinematics (cf. paperI). As
we have seen, the harmonic oscillator’s Newtonian group G
is isomorphic to the semidirect product SO(2)&T(2),
where T(2) denotes the group of translations in the plane.
Hence G is connected (but not simply connected). In this
paper we are only exploring the physical possibilities of
quantum kinematics, and therefore it seems advisable to
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start considering the universal covering group G of G, in-
stead of G itself; i.e., G=R_ &T(2), where R, denotes the
multiplicative group of positive real numbers. One reason
for this choice is the fact that G is connected and simply
connected. The parametrization of the Newtonian group G
is simply given by three (orthogonal) real axes; i.e.,

— 0 <q’< + 0, a=123 (2.1)

These define the group manifold M(G). The identity ele-
ment of G corresponds to the origin, e = (0,0,0), and the
binary combination laws of the parameters (namely, the
group law) can be written as follows:

¢ '=g'(¢h0)=q"+4q"
=g'(¢q) =¢' *coswg' +¢ sinwg' +¢°,  (22)
=g’(¢59) = —¢ *sinwg' +¢' > coswg' +¢*.

Hence, the group-inversion formulas for the parameters are
?' = - ql’
7= —¢* coswqg' + ¢’ sin wg',
7 = — ¢*sinwg' — ¢* cos wg'.

Next, we need to introduce the following right- and left-
transport matrices for contravariant vectors in M (G) (cf.

paper I):

(2.3)

RZ(g) =lim 3.8°(q59), (24)

L}(g) =1imd;g(g;q), (2.5)
q —e

respectively. Thus, using Eqgs. (2.2), we obtain

1 0 0

Ri(¢)=|0 coswg' — sinuwg' (2.6)
0 sinwg'  coswg'
[1 wq' —wq'

Lyp=|0 1 o | 2.7
|0 O 1

where a labels the rows and b labels the columns. Therefore,
for the right infinitesimal operators on M(G) [ie,
X,(q) = R;(¢)d,], one has
X 1= al&
X, = cos wq' 3, — sinwg' 3, (2.8)
X, = sin wg' 3, + cos wg' 3,
wherefrom the well known Lie algebra of E, follows:

[XI’XZ] = —wX;,

[X,X5] = wX,,
[Xz,Xs] =0.

(2.9)

Since the determinants of (2.6) and (2.7) are
L(q) = R(q) = 1, the Hurwitz invariant measure on M(G)
is given simply by du(q) = o dq' dg” dg’, where p, is an
arbitrary normalization constant.'’ In consequence, Gisun-
imodular and the Hilbert space 5#°(G) that carries the regu-
lar representation is defined as the set .2 2(G) of square-
integrable wavefunctions ¢(g',¢%,¢°) on M(G):
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¥|¥) =ﬂoffqu' dq¢’ dg’|¥(¢ .¢%.¢°) > < .
(2.10)

It is also useful to consider the rigged Hilbert space structure
attached with ¥°(G), for this allows us to introduce an or-
thogonal complete continuous basis {|¢'¢*¢*)} on #(G).
This basis is such that (paper I)

9''q'*q *le'd’q)
=ps'6(q' ' —4")8(q' > — ¢))8(q'* — ¢*),
/wf f f dg' dg’ d¢’|q'd’*) 9'de| = I,

where I denotes the identity operator in #°(G).

Now we are ready to consider the unitary operators that
carry a ray representation of (G) within X (G). Let
. (g':q) be an exponent (or two-cocycle) of (G); namely,
&, is a continuous real-valued function of ¢’ and g, which
satisfies the well known three-point functional relation,'®

b (q30) + ¢ [0":8(050) ] = b (9";q") + #i [8(9739)34],

(2.13)
as well as left and right homogeneous “initial” conditions at
the identity

P (g;¢) = 1 (;,9) =0. (2.14)
Since G is connected and simply connected, we may assume
without loss of generality that ¢, is globally well defined and
differentiable on the whole space M (G) X M(G). (See Barg-
mann’s paper'® for details.) Then, associated with each ad-
missible two-cocycle ¢, of (G), we introduce a set of linear
operators U, (¢',4%¢°) defined on M(G), and such that

(2.11)

(2.12)

Uc(q' "' 24 >)e'a%4°)

=exp[id, (¢’ '.9' *9' >9'997) ] (2.15)
X |8'(¢':9).8°(¢':9).&°(¢";0)),
Uk (ql’ 2,43)|0,0,0> |q :q ’q (216)

Since the regular basis {|q)} is complete, these equations
define these operators on #°(G) indeed. It is immediate that
from these equations one gets

U (¢ g %q YU (¢ 49)
= [exp (¢’ .4’ %4 4" 479 ]
XU, 18'(49).8°(49),8’(¢';9) ],

as required for a ray representation. Moreover, it can be
shown that these operators are unitary; in effect, one has

U ()=U7(q) =e U, . (2.18)

However, we observe that the unitarity of these operators is
not “perfect” in general, unless ¢, (¢;g) =0. Also, the fol-
lowing consistency requirement can be proved rather easily:

2.17)

Ue(q) fdﬂ(q')lq’)(q'l =fd/u(q’)lq')<q'lU,c (9,
(2.19)
as a consequence of the fundamental properties of a two-
cocycle. Clearly the matrix elements of the U, (¢)’s with
respect to the regular basis {|¢)} are given by
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UPA(q) =(¢|U(D]g")

=pg ¥ 80g  ~ (¢' +4" D] (2.20)
xX5[q' 2 —g(q:9")18lq' > — & (g:¢")1,
and therefore one has

J du(g UL (g UL (g,) = U L g(gi92)],
(2.21)

for any two given points g, and ¢, in M(G), asit should be.

Since the U, (g) are unitary operators in #°( G), we
observe that one and the same Hilbert space (which carries
the regular vector representation of G) also carriesall the ray
extensions of this representation. In effect, for any given vec-
tor |¢)eﬁ’(@) one has

9 = [ du@v@la),

where ¢¥(q) = (g|¢) is a wave function defined on M (&,
provided it belongs to .& 2(G). Therefore, if one considers
the image vector produced by one of the operators Uy (¢)
acting on |¢), say,

U @) = %) = [ de@wP@la), 229
this yields, immediately,

(2.22)

jdy(q’)|¢;">(q')|2= f @O (224
where ¥$*(¢') is given by _
¢;k)(ql) _ e#k[tr.x(i;q')l'/}[g(a;q;)]- (225)

Thus ¢ (¢')e£2(G) if, and only if, ¥(¢')e.£*(G). Equa-
tion (2.25) states the unitary projective transformation law
for the wave function belonging to .#%(G). By the way, this
formula shows neatly that we are handling the ray exten-
sions of the left regular “true” representation of G, which
reads

9 (q") =¢[g@ea)], (2.26)

according to the usual approach to this subject.!” This fact is
important for the purposes of quantum kinematics, because
one does not need more geometric structure than #°(G)
itself in order to handle all the regular ray representations of
G.

The method for calculating an admissible (local) expo-
nent of a given Lie group is well known.'"*!¢ This is a rath-
er simple subject, which is becoming fashionable in several
areas of theoretical physics,'® and which belongs to the con-
text of the cohomology theory of Lie groups.'® In this paper
we shall use the following two-cocycle of the Euclidean
group in the plane:

6.(qd' \q Lq' 2 ' 3’q1’q2’q3)
= (k/9)[(q' )+ (¢'*)?]
X [tan w(g' ' + ¢') — tan wg’ ]
+ (k/9)[(6»)* + (¢°)]
X[tanw(g’ ' + ¢') — tan wq')
+(k/2) (¢' ¢+ ¢ °¢)
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X [cos wq' tan w(q' ' + ¢') — sin wq']
(k/2)(ql32 12 3)

X [sin wg' tan w(q' ' + ¢') + cos wq'], (2.27)

where k is a real ray constant corr'wponding to the two-cocy-
cle of the extended Lie algebra. This exponent ¢, was calcu-
lated by means of non-Abelian analytical techniques, which
are a coordinate-dependent realization of the coordinate-in-
dependent (i.e., geometric) techniques presented in
Houard’s paper.'? This function ¢, is an admissible two-
cocycle of G, for it is nonequivalent to zero and satisfies the
fundamental relation (2.13). Moreover by means of Egs.
(2.3), it can be shown that (2.27) implies

¢ (4:9) =+ (g:9)= 0 (2.28)
Therefore the unitary operators U, (q) of the ray representa-
tion associated with this two-cocycle satisfy

S@Q=U7()=U(9), (2.29)

instead of Eq. (2.18). We shall refer to this fact by saying
that these operators are perfectly unitary and that the corre-
sponding exponent ¢, (¢';q) belongs to the perfect unitary
gauge. Another important property of the exponent function
(2.27) is that it is a completely gauge-reduced
two-cocycle, in the sense that no term of the form
v(¢') +y(q) — v[g(q';9)] [with (0,0,0) = 0] appears in
this function. Once we keep the ray constant k fixed, these
two properties [namely, (a) to belong in the perfect unitary
gauge, and (b) to be a completely gauge-reduced exponent]
make the two-cocycle (2.27) of G unigue. On the other
hand, both conditions [(a) and (b)] recommend them-
selves, since both are physically reasonable. These math-
ematical minutiae are very important for quantum kinema-
tics and will be taken up elsewhere.?’

Finally, it can be seen that, with ¢, as given in Eq.
(2.27), one has the following commutation rule:

Ui (¢',.q) = exp| — i(k /4)|q|* tan wg'1 U, (¢',0) U (0,q)
= exp[ — i(k /4)|q|” tan wq']

X U, [O,R(wg") q1U, (¢',0), (2.30)
where, clearly, @ = (¢°.¢”) is a vector in the plane, and where
the rotation matrix R(wg') is given in Eq. (1.3). So much
for the regular ray representations of G.

lil. KINEMATIC ALGEBRA OF THE HARMONIC
OSCILLATOR

Now we come to the core of the issue, because the kine-
matic algebra of G determines the quantum rules of the sys-
tem and, therefore, is of paramount importance in the kine-
matic approach to quantum dynamics.

First, let us consider the infinitesimal operators P (¥,
a = 1,2,3, which are the generators of the regular ray repre-
sentation. Thus we get

U, (8q) =1— (i/#)6q°P . 3.1

Hence, the infinitesimal transformation corresponding to
Eqgs. (2.23) and (2.25) yields the general formula
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POlY) = — iﬁfdu(q){[l’a (@) —ir™(q) ]¥(9) }a),
(3.2)
where the functions r¥’(¢) are given by

r$9(g) =1lim .4, (q';9) (33)
g —e

[i.e., 7{¥ (e) = 0]. Thus, from Eq. (2.27), in our case we get
r® = (k/Awl(g*) + (¢°)*]sec? wg',
Y = — (k/2)q° sec wq'.
R = (k /2)q* sec wq'.
(We shall refer to these functions as the exponent generators
of the ray representation.) So we have the following map-
ping:
PP|y) -~ — {3, — i(kw/4)q* sec® wq'}(q',q),
PP|¢) - — ifi{cos wg' 3, — sin wq'd,
+ i(k /2)g’ sec wg' M (g',q),
PP|y) - — ifi{sin wg' 9, + cos wq'd,

—i(k /2)q” sec wq'}(q" ),
which casts the “generalized momentum operators” (cf. pa-
per I) into useful expressions for explicit wave-mechanical
calculations on M(G). Of course, for that matter, one may
also write

PPlg) = #H[X,(9) +irl*(9)]lg),
which one obtains directly from Eq. (2.15).

The extended Lie algebras associated with ray represen-
tations of Lie groups are well known. ¢ From Eq. (3.6), after
some manipulations, we obtain

[P{",P{] = ifwP P,

[P{P,P{F] = — itiwP (P,

[P{P,P{R] = itk
These are the familiar formulas for the extended Lie algebra
in the regular representation of the Newtonian covering
group of the harmonic oscillator.!?

Now we turn to the generalized position operators intro-
duced in paper I; namely, we define Hermitian operators Q °
by means of their spectral integrals,

Q°= f du, (Ql9)e°(q|, a=123.

These operators are such that Q°g) =g¢%¢g) and
[@40?] = 0hold. Taking into account the general proper-
ties of an exponent, it can be shown that these Q “’s transform
according to the following law under the elements of the
group:

U (9)Q°U,(g9) =g°(g;Q) =fdﬂL (@) \g) e (g:9'){q'|.
(3.9)

This result is valid, in general, within the left regular ray
representations of a Lie group. Therefore, if one considers
the infinitesimal version of this unitary transformation, one
obtains the same non-Abelian canonical commutators which
were already presented in paper 1. Indeed, one has general-
ized commutation relations for non-Abelian variables; i.e.,

(34)

(3.5)

(3.6)

3.7

(3.8)
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[Q°Pi°] =#R;(Q), (3.10)
where the operator R 7 (Q) has the spectral representation

RL(Q) = fdm (@R (@) {gl.

Accordingly, using Eq. (2.6), we obtain the following set of
non-Abelian canonical commutators for the simple harmon-
ic oscillator:

[Q 19P gk)] = iﬁ’
[@L.P{P]=0, [Q%P{¥]=ificosw@’,
[@L.P{¥] =0, [@%P{"]=ifisinwQ’,
[e*pP¥]=0,
[Q3P§P] = —ifisinwQ’,
[Q3P§P] =i#isinw@".
The set of commutators presented in Eqgs. (3.7) and (3.12)
constitute the extended kinematic algebra of G. We next de-
rive some interesting consequences of these commutation
relations,

First (and most importantly), from the Lie algebra
(3.7) we immediately obtain the fundamental result

(3.11)

[@%P{] =0,

(3.12)

[ae,al] =1, (3.13)
where the “ladder” operators are defined by
a, = (1/#2k) (P{¥ +iP{),
(3.14)

al = (I/#2k) (P§¥ —iP{P).
Bear in mind that these operators are not defined within the
regular vector representation of G, since in that representa-
tion one sets k = 0. We also wish to remark that the assump-
tion k > 0, which is implicitly made in Eq. (3.14), means no
loss of generality. Furthermore, if in the present context one
looks for a Casimir operator of the extended Lie algebra
(3.7), one easily finds that the particular combination of
generators

S, =P + Yw(a.a] +ala,) (3.15)
is indeed an invariant of the algebra; i.e.,
[S,P¥]1=0, a=1,23. (3.16)

Therefore, S, is an invariant operator of the ray representa-
tion

UL(@)S U (g) =S,. (3.17)

Henceforth, for obvious reasons, this invariant operator .S,
will be referred to as the Schrodinger operator of the system.

A novel feature of this formalism is the fact that two
different Hamiltonians come to the fore. In fact, the operator

H, =£ﬁw(akal +afa,) (3.18)
is the familiar Hamiltonian of the harmonic oscillator (we
shall call it the dynamical Hamiltonian of the system). On
the other hand, the operator P {* is the generator of time
translation symmetry (hereafter, we shall call it the kine-
matic Hamiltonian of the system). However, it is easy to see
that these two Hamiltonians are linearly independent opera-
tors. To this end, it is enough to look at the kinematic algebra
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obeyed by the dynamical Hamiltonian, which is as follows:
[Pi°H] =0,
[PS9,H, ] = PP,
[P{O.H,] = — ifwPiP,

and also

[Q lka ] =0,

[Q%LH, ] =i(w/k) (P§¥ coswQ' + P{¥ sinw@'),

[Q%H,]= —i(w/k) (P{¥ sinwQ' — P{ cosw@").
(3.20)

[Suppose that we had considered exclusively the extended
Lie algebra (3.7). Then, after comparing Eq. (3.19) with
(3.7), we could think of the possibility of having a null
Schrédinger operator, S, =0, that is, H, = — P {*. How-
ever, a glance at the canonical commutators (3.20) and
(3.12) reveals immediately that such a ‘“‘conclusion” is
false.] Furthermore, these two Hamiltonians commute, and
therefore the quantum model (one obtains by “quantizing”
directly the Newtonian symmetries of the system) consists
of two noninteracting parts. The Schrédinger operator thus
appears as the total Hamiltonian of this composed system.
(We shall return to this issue presently.)

The following commutation relations are immediate
and useful:

(3.19)

[ex™2 ,P{P] = F fiwet ™2 (3.21)

[@'.H,]=0, (3.22)
ie.,

[ex"2S, ] = Ffwe=™2", (3.23)
Since S, is a Casimir operator, '

[@:,S:] = [a],Sk] =0, (3.24)
and since for the dynamical Hamiltonian one has

[64.H, ] =fwa,, [af.H,]= —fwa}], (3.25)

it follows that one also has “opposed” ladder effects for the
kinematic Hamiltonian:
[ac,P{¥] = —fwa,, [a},P{¥]="Pwa]; (3.26)

i.e., the “annihilation” operator of H, is a “creation” opera-
tor of P ¥, and vice versa.

To end up this section, let us define two auxiliary opera-
tors

by = (k/2)'*Z* + ie"?'a],
bl = (k/2)2Z — je~Q'q,, (3.27)

where Z = Q2 + iQ>. After some manipulations, it can be
shown that

[b,PP] = [61PF] =0, a=123. (3.28)

Hence, every Hermitian function of these operators is an
observable constant of “motion” of the system and, further-
more, it also plays the role of an invariant operator of the
group. In this paper we shall be particularly interested in the
Hermitian combination

B, =b Ibk ’
because of the following striking result:

(3.29)
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[bibl] =1 (3.30)

The set of commuting Hermitian operators {P {*, H,, B, }
is complete, and may be used instead of {Q !,0 %,Q 3} in order
to characterize the three “degrees of freedom” of the Hilbert
space #°(G). Let us remark, however, that in this paper we
shall not indulge on the possible physical significance of b,
and b [, which will play here a purely auxiliary role.?!

IV. SUPERSELECTION RULES

With the aim of arriving at a reasonable physical inter-
pretation of the model, let us examine the following postu-
late: the allowable physical states of the harmonic oscillator
correspond to simultaneous eigenkets of the invariant opera-
tors S, and B, previously found. It is clear that the superse-
lection rule of the Schrodinger operator S, corresponds to
the law of conservation of total energy of an isolated system
that consists of two (noninteracting) parts. The physical
meaning of the superselection rule of the operator B, here
plays an auxiliary role and remains to be discussed at an-
other opportunity. Of course, with the aim of tackling the
present endeavor, we need to solve the eigenvalue problems
of S, and B, within the Hilbert space #°(G).

Using the realization of P {*’ in the Q representation, as
stated in Egs. (3.5), one easily solves the eigenvalue equa-
tion of the kinematic Hamiltonian. Indeed, one gets the ei-
genvectors

|E,) = fd#(q)uz, (q)eXP[i[(%)q‘

+l‘:—q2 tan wq‘”lq>, (4.1)
where ¢ = (¢%,¢%), @ = (¢*)* + (¢°)? and where the spec-
trum is given by — o <E,< + . The function
ug, (¢>,g°), which figures in Eq. (4.1), corresponds to the
degeneracy of these states. This function may depend on E,,
but not on ¢'; otherwise it remains completely arbitrary, pro-
vided the scalar products

(E1|E))
=8(E; — E,)f f dg* dg® ui*(¢*.4* ug, (§°9°)
(4.2)
are such that
(ug, |ug,) = f f dq’ dq’ u*(q°.9°Yug (9°.9°) < .
(4.3)

Here, and henceforth, we set u, = (27h) ~ . [t is clear that,
sensu stricto, one should write |E,,[u, ]) to denote the ei-
genkets defined in Eq. (4.1)].

The eigenvalue problem of H, is well known, of course,
One has

H,|n,) = (ny + Dw|n,), n,=0,12,..., (4.4)
with
n,) = (n}) ~'2(a})™|0) (4.5)
(clearly, |0) = |n, =0)), and
a,|0) =0. (4.6)
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Hence, all that remains to be done is to obtain these eigenkets
as vectors in /7°(G). To this end, we cast the ladder opera-
tors in the Q representation; i.e., we set [cf. Eq. (3.5) and
(3.14)]

a, |y - —i(2/k)'?
X expliwg'}[9,,+(k /4)z(1— i tan wg") 1¥(¢'.q),
al ¥y —» —i(2/k)"? (4.7)
X exp{iwg'}[,~(k /4)z*(1+i tan wq') |¥(q',q),
where we have written z = ¢* + ig®, 29, = 3, — ids, etc. So

one obtains the ground state

m2 =0y = [ dutaruota')

exp ( _ % 12]2(1 — i tan wq‘)) ),
(4.8)

wherefrom the general form of the eigenvectors follows:

|n,) = (—i\/%) | (nz!)‘”zfd,u(q)

Xexp( — z'nzwq‘)[(ﬁz — %z*)nzvo(q’,z)]

X exp ( — L:— lz]*(1 — i tan wq‘)) lg)- 4.9)

Again, the function v,(g', z) describes the degeneracy of
these eigenkets; it does not depend on n, (neither does it
depend on z* = ¢° — ig’). Otherwise, v,(g',z) is a com-
pletely arbitrary analytic function of z, provided (0|0) is
finite. Quite generally, one has the following scalar product:

<”5|”2>=5n5n2(2”h)—lj- dq'f dz

Xexp — (k/2)|z)*[v5 (¢", 2) ] *volq", 2).
(4.10)

Now, a glance at Egs. (4.1) and (4.9) yields immediate-
ly the general form of the simultaneous eigenkets of the two
commuting Hamiltonians, P {*’ and H,; namely, we obtain
eigenkets of the form

|E,n2)=(—i\/%) (nz!)_”zfd,u(q)

X exp (% (E, — nzﬁw)q')

X [(a, — %z*)nszl (Z)]

Xexp(— % |z]*(1 — i tan wq‘)) lg)s

(4.11)

such that
ng)|E1nz> = (E, — nyfw)|E;n,), (4.12)
H,|E\n,) = (ny + ) fw|En,). (4.13)

In this manner, one has solved the eigenvalue problem of the
Schrédinger operator; indeed one has
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S |Eny) = (E; + Miw)|E n,). (4.14)
Moreover, the following orthogonality relation holds:

(Eim|Ems) = 8(E; —Eps,, [ [d%

Xexp( — (k/2)|z|*)[ v, (2) ] *vg, (2).
(4.15)
Thus, we are in a position to formulate our first superselec-
tion rule: for a fixed value of the ray constant k (which we
take as k > 0, without loss of generality), the allowable phys-
ical states of the system are described by kets of S#°(G),
which are given by superpositions of the form

I%E) = i Cn, () |Eny), (4.16)
n,=0
so that
Sy |GE,) = (E; + w) |¢,E,). (4.17)

Clearly, the basic eigenkets |E;n,) defined in Eq. (4.11) de-
pend functionally on the wave function v, (z) one uses for
building a ground state vector of H, . (More rigorously, one
should write the functional kets | E,n,,[vg, ]) to denote these
eigenkets.) Notwithstanding this degeneracy, the following
orthogonality relation holds quite generally, as a conse-
quence of (4.15):

(YE; [:E))
=8(E; —E)) Zc’,‘,‘z(zp')c,,z(z/z)fjdzz

Xexp( — (k/2)|z]))[vE, (2) |*vg, (2). (4.18)

The Hilbert subspace %y C#°( G), defined by means of
the superposition (4.16), has two degrees of freedom corre-
sponding to the coefficients ¢, (¢) and to the arbitrary wave
function vg, (z), which is implicit in |En,). From Eq.
(4.18) we see that the probability amplitude for a transition
from a state belonging to the subspace 77, , toastate belong-

ing to #°, is zero when E | #E,, as it must be. Of course,
one has to manage the admissible transition between phys-
ical states by means of the well known mathematical refine-
ments called on by a continuous spectrum. Nevertheless, it is
clear that this complication does not preclude the interpreta-
tion of the superselection rule introduced by .S as the law of
conservation of total energy.

Next, let us discuss the second superselection rule. In
order to obtain a new basis in #°(G), to be used instead of
{|4'¢%¢>) }, we shall consider the auxiliary Casimir operator
B, defined in Egs. (3.27) and (3.29). [As we have already
remarked, the set {P (¥, H,, B, } is a complete set of com-
muting self-adjoint operators in 5#°(G).] According to Eq.
(3.30), the eigenvalue problem of B, has the general solu-
tion
n,; =0,1,2,.... (4.19)

The Q representation of the auxiliary ladder operators, b,
and b}, yields

by |¥) - (k/2)"?[ 38, + (k/4)z*(1 — i tan wg") |¥(¢",q),
bL1Y) - (k/2)'?[3,. — (k/M)z(1 + itan wq') |¥(¢'.Q).
(4.20)

By |ny) = nylns3),
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[ As the reader can appreciate, these formulas make an inter-
esting contrast with the corresponding formulas (4.7) for a,
and af.] Hence, the ground state |n, = 0) of B, turns out to
be of the form

|n3 = 0) = fdp(q)wo(qlJ*)

Xexp ( - —f— |z|>(1 — i tan wq‘)) lg), (4.21)

where w,(g',z*) is an arbitrary normalizable function [cf.
also, Eq. (4.8)]. Thereafter, using the well known process
analogous to (4.5), one obtains the eigenvectors of B,;
namely,

(- o
k \m .
x| (00 = 5 2] wtaan|
Xexp(— %|z|2(1 —itan wq‘)) lg). (4.22)

Now, in order to obtain the desired common eigenvectors
|En,ns3), let us equalize Egs. (4.11) and (4.22), recalling
that v () does not depend on n,, but may depend on 7,, and
also that w,(g',z*) does not depend on n,, but may depend
on (E,,n,). Thus we demand
( — W2/k)™(n,)) ~ V' exp[ (i/%) (E, — nyhw)q']

X[, — (k/2)z*]™vg,,, (2)

= (—2/k)™(ny)) /2

X[04— (k/2)z]"’wEl,,z(q‘,z"‘). 4.23)

The detailed analysis of this condition is rather lengthy and
yields the final answer

|Eynyns)
k ny+n;+1
=i"2( — (mny! n3!)"”2fdu(q)
2
] k
X exp (% (E,— ’lzﬁw)ql) 2*"zMF, ) ( Y |z |2)

X exp ( - % |z|2(1 — i tan wq‘)) lg), (4.24)
where we have defined the function
{nyn}
~ n,! n,!
Fn u x) = 2 3 x—m
any ()= 3 ml(ny — m)(ny — m)!
4.25)

with {n,,n,} . denoting the smallest number in {n,n,}.
These eigenkets contain no degeneracy, satisfy the orthogon-
ality relations,

(Einyn}|E\nn,) =8(E; — EDS,, 8, (4.26)
and the completeness condition on 5#(G),
f dE] 2 Z |E1n2n3><Eln2n3| =I. (4.27)
o« n,=0n,=0

[Equation (4.26) can be proved by means of the following
lemmas:
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J d?zexp[ — (k/2)|z)?]

X (82, — —Iziz)f(z,z*) =0, (4.28)
z""'zz"-‘F{,,zy,h} (— —k— |Z|2)
2
= (_ i)'h (az _ iz*) P
k 2
2\ k n3 .
= (——;-) (az"— 7 ) Z*", (4-29)

Of course, the proof of the completeness relation is quite
involved, and requires the use of the generating function of
the Hermite polynomials. We omit these details for the sake
of briefness.]

In summary, according to the assumed superselection
rules, the allowable physical states of the harmonic oscillator
correspond to kets in #°(G) satisfying the following super-
position principle:

[E 1) = i €, (V)| Enans), (4.30)
n,=0
ie.,
Sy [:E n3) = (E, + o) [;En,), (4.31)
B, |YsE n3) = ns|Y;E ns). (4.32)

The Hilbert subspaces 7, CH# (G) containing these
physical states have just one degree of freedom, which corre-
sponds to the coefficient of the superposition (4.30); name-
ly,

i (Einyn;|GEny).  (4.33)

n3=0

¢, ()= f dE |

Of course, one has

-

(YE {n3|Ens) =6(E | — El)‘s,,;,,3 2 cx (¥e,, (),

n,=0
(4.34)
and 5 (G) becomes an incoherent Hilbert space.

V. COMPLEMENTARY RAY REPRESENTATIONS

As it follows from the previous discussion, the quantum
model stemming from the regular ray representations of the
Newtonian group G contains all the essential mathematical
features of the familiar quantum theory of the harmonic os-
cillator. Yet, this model still looks far from the ordinary
wave mechanical model of the system. In effect, what is miss-
ing in the present approach is a space-time description,
which should be concordant with the “special relativity”
theory of the harmonic oscillator already sketched in the
Introduction. Here we shall attain such a description by
means of some purely kinematic considerations.

To this end, let us consider a new kind of kets, labeled as
|#,x) because they are in one-to-one correspondence with the
events (¢,x) of Newtonian space-time. These kets belong to
the rigged Hilbert space structure associated with #°(G)
and should be such that, by construction, one has
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Ui (4'.9%¢°) |t.x) = exp[ip, (¢'.4°4°t.x) ]
X |t + ¢'x + ¢? cos wt + ¢* sin wt ),
(5.1)
where p; is a real-valued function. Accordingly, we shall say
that these kets carry a complementary ray representation of
the space-time symmetry realization of G'stated in Eq. (1.1).
Clearly, this property would entail the following transfor-
mation law for wave functions defined on the space-time
arena:

tx|UL ()|

=e PRyt 4+ ' x + g7 cos wt + ¢ sin wt), o)
(5.

where

Y(1x) = (txl), |9)eX(G). (5.3)
It is evident that in order to solve the problem set by the
existence of such kets (and, by the way, to learn how to
construct them) one must look for necessary and sufficient
conditions for having the formal property stated in Eq.
(5.1). Hence, we assume (5.1) and examine first the re-
quired properties for having an allowable phase function
Pr(g;tx). An immediate consequence of Eq. (5.1) is the
requirement
P:(0,0,0;t,x)= 0. (5.4)
One also easily gets the following functional relation for the
phase function p, and the exponent function ¢, :
P (@tx) +pi ('t + ¢ x + ¢° cos wt + ¢° sin wr)
—pr[8(q9):tx] = 6, (4739), (5.5)
where the g(q';q)’s are given in (2.2). These two properties
are enough for obtaining a constructive method for calculat-
ing an admissible phase function p, (g;¢,x).”> As a matter of
fact, since the infinitesimal operators, corresponding to the
space-time realization (1.1) of G, are given by
Z 1 ( th ) = ax ’
Z,(tx) =coswtd,, (5.6)
Z,(tx) =sinwtd,,
we obtain the following solution [which is associated with
¢, as givenin (2.27)]:
P (g 2g%tx) = — (k/8)[(4°) + (¢°)*]tan wg'
— (k/8)[(¢%)* — (¢*)*]sin 2ur
— (k/2)q°q> cos 2wt
— kx(g* sinwt — g* coswt). (5.7)

The reader can check this phase function against Egs. (2.20)
and (5.5). We shall also need the phase generators of the
complementary ray representation, i.e.,

P (tx) =0,

PP (tx) = — kx sin wt, (5.8)
p5™ (t,x) = kx cos wr,
which are defined as follows:
P (tx) = lin; 3, pe(gitx), a=1.273. (5.9)
q—i

2030 J. Math. Phys,, Vol. 27, No. 12, December 1986

Now we set, ex hypothesi, |t,x)e#(G), i.e.,

ltx) = f du( DV (%0 |g),

where, clearly, ¢, (t,x;9) = (t,x|q). (Of course, these kets
|t,x) must depend on k.) Then, if one considers ¥, at the
identity, say,

i (£x;0,0,0) = (£,x/0,0,0) =&, (,x), (5.11)

where £, is an arbitrary single-valued wave function defined
on the space-time manifold, one can show that a necessary
and sufficient condition for the kets |¢,x) to be endowed with
the property (5.1) is that they have the following general
form:

(5.10)

|tx) = fd,u(q)é‘t(t + @' x + g* cos wt + 3 sin wt)

Xexp[ip, (§'.9°3%1.%)]|g). (5.12)
Thus, since &, remains at our disposal, we have enormous
freedom for adjusting a complementary ray representation
of G within #°(G).

Moreover, once a suitable generating wave function
£ (2,x) has been adopted, it is clear that there remains some
gauge freedom for fixing the phase of the kets |£,x) them-
selves locally in space-time. These o transformations are of
the form

|t} — [tx), = €7 |tx), (5.13)

and are completely independent of the gauge transforma-
tions that perform the equivalence between ray representa-
tions inherent to the theory of two-cocycles.’® As a conse-
quence of (5.13) one has the following o transformation of
the phase generators:

PR (1x) = pt (tx) — Z, (tx)o(t,x). (5.14)

Once £, is fixed, all the o-gauge freedom of the formalism
comes from this last equation. In other words, the solution
presented in Eq. (5.8) is defined only within a o transforma-
tion of the form (5.14). It must be borne in mind that the
generating wave function £, (¢,x) is not committed with
these o transformations. In effect, &, (£,x) must be deter-
mined independently, on some physical ground.

Finally, let us review some rather simple (albeit impor-
tant) quantum kinematic features of the complementary ray
representation carried by the space-time kets [¢,x). First we
observe that an infinitesimal transformation of these kets
yields the following space-time realizations of the “general-
ized momentum” operators:

PPltx) = i#id,|tx),

PP |tx) = ifi(cos wt 3, — ikx cos we)|tx),  (5.15)
P{P|tx) = ifi(sin we 3, + ikx cos wt) |t,x);
and therefore the ladder operators correspond to
a,|tx) = (i/\2k)e"'(d, — kx)|tx),
(5.16)

ol |tx) = (i/\2k Ye = ""(3, + kx)|t,x).

Hence, by means of the complementary space-time represen-
tation of G, the dynamical Hamiltonian stated in Eq. (3.18)
can be cast in the following form:
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H, |tx) = [ — (Aw/2k)3? + § uwks?] [6x).  (5.17)

. Therefore, according to the standard quantum theory of the
oscillator, we recognize that the ray constant k£ must be inter-
preted as

k = mw/#, (5.18)

where m is the mass of the oscillator. In this fashion we
arrive at the well known form of the Schrédinger operator;
i.e., we get

Si|tx) = [i#id, — (##/2m)3 % + imuwx*]|t,x).
(5.19)
It must be borne in mind that one arrives at this result using
exclusively the assumed Newtonian symmetries of the sys-
tem.

Of course, had we used a different set of allowable phase
generators p{*’(z,x) we would obtain a different Schré-
dinger operator in (5.19). This means, however, that only a
local o change of phase has been performed on |¢,x). The
solutions we have adopted in Eqs. (5.8) avoid this artificial
complication from the beginning, because they correspond
to a completely gauge-reduced set of phase generators. That
is, according to Eq. (5.14), no terms of the form
Z, (tx)o(t,x) appear in the solutions (5.8) and, moreover,
any other conceivable set of solutions would differ from
(5.8) merely by the presence of such spurious terms.

VI. THE GENERATING WAVE FUNCTION &, AND THE
SPACE-TIME KERNEL OF THE HARMONIC
OSCILLATOR

Once a suitable phase function p, (g;t,x) has been
found, it is rather natural to require that the space-time kets
|tx) themselves correspond to physically realizable states.
Thus we set

Siltx) =
and

Bklt,x) =”3|t»x>; (6.2)
i.e., in the sequel it should be understood that |#,x) stands for
|tx;E\,n3). Furthermore, for the sake of concreteness, since
in this paper we are only interested in S, and not in B, , here
we consider exclusively the simplest case; namely, hence-
forth we set n, =0, since this simplifies our calculations a
great deal. The general situation, with 7, =0,1,2,..., will be
considered elsewhere. Thus, all the physical states discussed
hereafter belong to the Hllbert subspaces #’g , CH# (G,
with n; = 0.

According to Eq. (4.24), we are searching for a set of
states |7,x;E,) that satisfy simultaneously the following con-
ditions:

(E, + } fiw)|tx), (6.1)

[txE ) = 3 el (6x)|En0)

n=0

(k)
( )l/zfd ( )Z . (t,x)

. |k .
X(l\/;z"‘ exp( —zwq‘)) exp(ﬁ E,q)
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X exp ( - % |z|2(1 — i tan wq')) lg)

= J.d#(q)é’ﬂt—q‘;x —g*cosw(t—gq')
— ¢ sinw(t—q")]

Xexp ( — i-f— {[(g®? — (¢*)?]sin 2w(t — ¢")

— 2¢°q® cos 2w(t — q')})exp{ikx

q') — g’ cos w(t—¢")1}
Xexpli(k /4)|z|* tan wq']|q). (6.3)

Of course, the determination of cf,f’ (¢,x) is trivial, since from
Eq. (5.17) and the superselection rule (6.1), one gets

[#d, — (fw/2k)d% + } fwkx?]c(F (1,x)

X [¢* sin w(t —

= (E, +} fw)cl® (2,x), (6.4)
which has the well known solution
et (tx) = N Pexp[ — (i/#) (E, — nyfiw)t |
xexp[ — (k/2)x*]H, (Vkx), (6.5)

where H,, is the Hermite polynomial of order n,, and N {¥’ is
an arbitrary normalization constant. The nontrivial part of
the problem consists precisely in adjusting the coefficients
N (¥ in such a manner as to have

; 172 o N k)
,f(a;x—a):exp(— —i—Ela)(—k—) D T
2} Z

x(\/%-) @+ ib)H,, (JEx)}

Xexp(— % (a2+b2))

X exp (1% (ab—2bx)), (6.6)

where we have written o =¢—¢q' and a + ib = z*"**,
Therefore, by means of the generating function of the Her-
mite polynomials,

> (mh™! [g (a+ ib)] H, (Jkx)

n,=0

=exp(— %(a+ib)2+kx(a+ib)), 6.7)

one sees that the unique choice of N {’, which gives a func-
tion that depends on a and x — a, but not on b, in (6.6), is
given by

NP = Qu/k)2(2"n,) ~V2( —i)=N(k), (6.8)

where the normalization constant N(k) does not depend on

n,. This yields the desired answer, i.e.,
:(I;X) =N(k)e—(i/li)E.te—(k/Z)xZ, (69)

and
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[t,x;E,) — (21T/k)l/2N(k)e_ (i/fi)E.te—(k/Z))c2
X i (—D"(2mn,) "2
n,=0

x e H, (Vkx)|En0). (6.10)

Thus we obtain the physical space-time states |t,x,E,
which carry the complementary ray representation of G
within #¢ o C27°( G) in the following equivalent forms:

[tx;E,)

= N(k)e~ (/PEig=k/x J‘d,u(q)exp(ﬁE1 )
X 3 . (‘/_/2)"2 exp(inw(t —gq yyzem (\/-x)
Xexp(k/4|Z]2(1 —itanwg"))|q), (6.11)
or
tEL)

= N(k) f du(q)exp(i/HE (t — q"))

Xexp( —k /2[x — ¢* cos w(t — q")

— g’ sinw(t—¢")]%)

xexp( —i(k/H){[(¢*)? — (¢*)?]

Xsin 2w(t — q') — 2¢°¢ cos 2w(t —g')})

X exp{ikx[q* sin w(t — q') — ¢* cosw(t —q")1}

Xexp(i(k/4)[(¢")* + (¢*)]tan wg')|q). (6.12)
Interestingly enough, the fundamental wave function &,

that generates these states is the familiar ground state wave
function (6.9) of the harmonic oscillator. Using the fact that

(En;0lEn,0) =8(E; —E1)6n n? (6.13)
then, for any given physical state |{;E,)e# ., i.e.,
[GE ) = 3 ¢, ($)|En0), (6.14)
one has
<t»x;E;|¢§E1> =58(E] '_El)'ﬁs,(t;x), (6.15)
where the wave function ¢ (2,x) is given by
k 172 R
Yg, (tx) = (7) N*(k)e "MEig— (k/2)x*
0 i"zcn (‘l,) .
X —=——e g (Jkx).  (6.16)
n,=0 \/—272-’12!
_

k3

Therefore, for the time-dependent Schridinger equation,
one gets
(tXE [ |Sk |4:E})
+ dmw’x? g, (1,x)
=8(E] — E\)(E, + Mw)vg (1,x), (6.17)
as it should be. In this way, one obtains the physical descrip-
tion of actual interest modulated by a delta function which
comes from the superselection rule. Plainly, integrating over
E { yields the final answer
[ —#3, — (#/2m)3 % + ymwx* | (2x)
= (E, + Qﬁw)iﬁE, (£.x),

which, of course, is consistent with Eq. (6.16).

Finally, let us briefly discuss the Feynman propagator of
the harmonic oscillator from the standpoint of quantum kin-
ematics. From Egs. (6.10) and (6.13) one obtains

(#/2m)3?

(6.18)

(tx'E{|tx;E) =6(E; — E)5(x'—x), (6.19)
if one uses the following normalization:

N(k) =27 V2g=3/ag /4 (6.20)
Hence, since
(t'xE 1|Se|t.xE )

= [#3, — (Aw/2k)32 + (Fwk /2)x*]

X (t'xE{|tx;E,)
= (E, + w){t'x"E ||t x;E,), (6.21)

it follows that the infinite series
(t'xE | |tx;E,)
= Tk 8(E} — E,)e/PEW —ng= (k/D(x?+5)

X i (2n2n2!)—le—-in,w(t’—-l)an (\/EX’)HM(\/]?X)
n,=0
(6.22)

must be the quantum mechanical amplitude (i.e., the ker-
nel) to get from the event (z,x) (in a “medium” with energy
E)) to the event (¢’,x’) (in a “medium” with energy E | ).
Clearly, during this process the harmonic oscillator evolves
freely, without interacting with the medium [the delta func-
tion §(E ; — E,) explicitly describes this fact]. Indeed, it is
well known that (6.22) corresponds to the full Green’s func-
tion of Eq. (6.17), satisfying the initial condition (when
t' =1t) stated in Eq. (6.19). However, the important point
we wish to remark is the following. If one uses Eq. (6.12),
then a rather lengthy, albeit direct, process of integration
casts this kernel in a closed form. Thus one obtains

172 :
(t'XE{|tx.E ) = —2—(———) S(E ] — E,)exp (%E,(t’—t))] dq* dg®

T

X exp (% [(x' —g?coswt’ — g*sinwt’)? + (x — ¢* cos wt — g° sin wt)2])

Xexp i(k/2)(g* coswt’ + ¢ sinwt ') (g% sinwt’' — ¢° cos wt’)

Xexp ( — i(k /2)(g* cos wt + g sin wt) (¢° sin wt — g> cos wt))
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xexp{ — ik [x'(¢* sinwt’ — ¢° cos wt ') — x(g* sin wt — ¢° cos wt) ] }

i 1 mw 172
= P — —E, + —fw t'—t)[
S(E; E‘)exP(ﬁ[ 13 ]( )Nomtmsmwe =0
. mw (x’2+x2)cosw(t’—t)—2x'x) 6.23
s .23)
XCXP(I 27 sinw(t’' —1) (

which corresponds exactly with the kernel of the simple har-
monic oscillator, as obtained in the path integral approach.”
Nevertheless, the integral one evaluates in Eq. (6.23) is a
Hurwitz invariant integral over the group manifold.

We deem this fundamental group theoretic result
(which here appears as a humble exercise or consistency
control) as something deeply rooted in the quantum formal-
ism, which deserves further research. For this reason, let us
briefly discuss a possible physical significance of Eq. (6.23)
in a rough (and tentative) manner. Let us recall some well
known elementary ideas. Given an event E, = (#,,x,) (see
Fig. 1) itis clear from Eq. (1.2) that all the sinusoidal world
lines (like W,) with parameters (a,8) on the locus
a = B tan wt, + x, sec wt, (of the classical state space) go
through the given event, and vice versa. Hence, given two
events, E, = (¢,,x,) and E, = (1,,x,), thereisin general one,
and only one, sinusoid (not shown in Fig. 1) that contains
these two space-time points (or else, under very particular
circumstances, there is none, but we may disregard these
exceptional cases). Therefore, given a world line W, through
E,, the classical probability of finding the oscillator particle
at E, is zero or one. (In the configuration shown in Fig. 1, it
would be zero, since W, does not go through E,.) In quan-
tum mechanics, however, because of the quantum fluctu-
ations there is a continuous (nonzeroth) probability ampli-
tude for the oscillator to go from event £ to any other given
event E,, whatever its state may be at E,. Now, as we show in
Fig. 1 (though in a rather sketchy way), the main concep-
tual difference between the Feynman and the kinematic
“pictorial” interpretation lies in the fact that, according to
quantum kinematics, the oscillator evolves permanently un-

FIG. 1. Because of the quantum fluc-
tuations (A,B,C,D,...) there is a
nonzeroth probability amplitude for
the particle to go from the event E,

X to the event E,, under the permanent
action of the elastic force.
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der the Hooke law of force and, therefore, the quantum fluc-
tuations (schematically denoted as the events A,B,C,D,..., in
Fig. 1) derail the system, which jumps from one allowable
world line to another. In other words, because of the simulta-
neous presence of both mechanical entities (i.e, the elastic
force and the quantum fluctuations) the system can go from
E, to E, following any piecewise continuous curve (like
E,ABCDE,) whose arcs belong to the admissible (i.e., sinu-
soidal) world lines. Hence, in order to determine the prob-
ability amplitude for the desired space-time transition
(E,— E,) one has to sum the “contributions” coming from
all the allowable world lines, whether they pass through the
given events or not. But this is precisely the job performed by
a Hurwitz-invariant integral pertaining to the group of
transformations that interconvert one world line into an-
other. On the other hand, as is indeed well known, in the
path integral approach to this issue”® one visualizes the sys-
tem as going from E, to E, along all conceivable world lines
connecting these two events, whether they are consistent
with the force law or not. Curiously enough, for the harmon-
ic oscillator, both descriptions give the same answer.

VIl. CONCLUDING REMARKS AND PERSPECTIVES

In this paper we have “quantized” the harmonic oscilla-
tor through its Newtonian relativity group. It is interesting
to observe that, in the sense of Eq. (1.1), a harmonic oscilla-
tor S describes a simple harmonic motion only with respect
to a preferred set of Newtonian observers (i.e., frames of
reference) who also perform simple harmonic motions (of
the same frequency) relative to the “laboratory” frame. Fur-
thermore, the laboratory system itself belongs to this set
(though, of course, it performs a simple harmonic motion of
frequency w with zero amplitude relative to itself). It is clear
that for any other Newtonian observer of .S, who does not
belong to the set defined in Eq. (1.1), S will not appear as a
simple harmonic oscillator. Thus, Eq. (1.1) entails the spe-
cial relativity theory of the one-dimensional Newtonian har-
monic oscillator, and what we have done in the present work
is to quantize this relativity group.

Elementary as they are, these relativistic features are
very important from the standpoint of quantum kinematics.
Hence, let us briefly underline some points in connection
with this issue. If one manages an isolated system S by means
of its special relativity group G '° one is handling, once and for
all, the whole set of preferred frames of reference relative to
which § appears in essentially the same fashion and it be-
haves in a well defined standard manner. Of course, the ele-
ments of G induce a change in the states of § (the states of S
are not invariant under G), but G does not change the very
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nature of S. It is S itself that is left invariant by the elements
of G and, whence, it seems possible to use G as a definition of
S7. Therefore, if one “sweeps” the group manifold of G one
goes over all the allowable classical states of S; that is, one
may consider all the possible histories of the system, over its
configuration space-time, by means of its special relativity
group. This is precisely what quantum kinematics requires
for the description of S, since from the point of view of this
formulation of the subject, as we have seen in our particular
example, quantum mechanics arises as a peculiar theory in
which the space-time propagator of S (i.e., the Green’s func-
tion, or kernel, of the time-dependent Schrédinger equation)
can be calculated by means of a Hurwitz-invariant integra-
tion over the whole group manifold, thus sweeping all the
possible classical histories of S. This makes an intricate con-
trast with Feynman’s path integral approach to quantiza-
tion.?? Furthermore, the Schrédinger equation itself can be
obtained in a rather natural way, within the context of quan-
tum kinematics, by means of a complementary space-time
representation of the relativity group. In this sense, it must
be borne in mind that the algebraic form of the familiar
Hamiltonian operator H,. (including the energy scale factor
#w/2) hag been calculated in the present endeavor, once we
demand an invariant operator of the extended Lie algebra.
No matter how easy this calculation has been in this particu-
lar instance, what we wish to underline is the fact that the
classical Hamiltonian of the system has been totally ignored
from the beginning (at least, explicitly) in order to achieve
the correct form of the dynamical Hamiltonian operator, as
well as to obtain the fundamental commutation relation of
the ladder operators. Thus, everything seems to come out
from the symmetries of the system. This result may have far
reaching mechanical consequences if one thinks of an isolat-
ed system S for which a Lie group G affords a sufficiently
complete description of its physically meaningful symme-
tries. No mechanical symmetry of S' (whether external or
internal) is lacking in G, by the hypothesis, and all its ele-
ments transform (any state of) .S into (another state of) S,
thus leaving the system invariant. In consequence, it seems
reasonable to postulate the existence of an invariant operator
(like the Schrodinger operator, for instance) which will con-
tain all the information regarding the mechanical structure
and the dynamical behavior of the system. In effect, like the
system S itself, such an operator is invariant under G, and
therefore it is a reasonable candidate for having a “math-
ematical representative” of the desired quantum model of S.
Interestingly enough, these considerations (if valid general-
ly) would throw new light into the fundamental role played
by the Schrédinger equation in quantum mechanics, putting
the whole quantum formalism into a new perspective, essen-
tially as a mechanics of symmetries, quite independent of the
classical formalism (which, then, would appear as the de-
rived construct). On the other hand, the invariant operators
of G, when interpreted physically, should correspond to
some permanent mechanical properties characterizing the
system S, and therefore they offer the possibility of introduc-
ing superselection rules in the Hilbert space #°(G), which
carries the regular ray representations of the group. This is
not just an ad hoc postulate since in any given physical state
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the permanent properties of S must have well defined perma-
nent values. Hence, this postulate is a rather natural logical
necessity of the kinematic approach to quantum theory. This
means that, from a mechanical standpoint, we must look at
#°(G) as an incoherent Hilbert space, within which the su-
perselection rules will be able to identify automatically the
physical Hilbert subspaces of the system.

It is clear that in the present kinematic formalism one
can interpret the kinematic Hamiltonian P {*’ as the Hamil-
tonian of the surrounding medium of the harmonic oscilla-
tor (i.e., of the whole collection of material bodies by means
of which the Newtonian frames of reference of the system
become realized). [Let us recall, for instance, the “opposed
ladder effects” stated in Eqgs. (3.25) and (3.26).] Hence the
continuous eigenvalue E,; fixes the arbitrary zero level
against which the energy of the oscillator is being measured.
In quantum mechanics one usually sets E; = — }fiw, and
then Eq. (6.18) yields the familiar time-dependent Schro-
dinger equation of the system.

Another important point we wish to discuss, which
seems to correspond to a general fact of the relativity theory
of motion, is that there are two equivalent quantum kinemat-
ic theories of the simple harmonic oscillator. One is directly
related with the space-time realization (1.1) of its Newtoni-
an kinematic group G, while the other is based on the state-
space realization (1.3) of the group E,, isomorphic with G.
Both theories must be physically interesting since both em-
brace the mechanical system, though from quite different
geometric points of view. This paper was devoted to the
space-time kinematic model exclusively. The state-space
kinematic model of the harmonic oscillator is already under
study, and will be considered in a forthcoming publication.
The way one handles the time coordinate in the construct
considered in this paper should also be discussed. Indeed, in
quantum kinematics one considers ¢ on the same footing as x,
as demanded in general by the spirit of relativity theory. This
demand is not merely formal (and, thus, devoid of physical
importance) for it is at the very root of every modern theory
of motion. In the last analysis, Eq. (5.2) gives us the relativ-
istic recipe by which the equivalent (or preferred) Newtoni-
an observers of the harmonic oscillator transform the wave
function describing the state of the system. For the Galileo
and the Poincaré groups (that is, for free particle systems)
this is a well known subject, of course, and what we have
done in the present paper amounts to a direct generalization
thereof. Let us recall that in the current approach to quan-
tum mechanics one sets ¥(t,x) = (x|¥;t ), instead of Eq.
(5.3), with |¢;¢ ) = exp[ — (i/h)tH]|¢;0), instead of Eq.
(5.2). Hence, the current formalism is completely different
from quantum kinematics, for it singles out 7 as a ¢ number,
while quantizes x, and therefore contradicts the relativistic
requirement, even at the Newtonian level examined in this
paper. We will come back to the issue of the time operator
from the standpoint of quantum kinematics (which has not
been touched in this work).

As it stands, quantum kinematics is a general frame-
work rather than a specific theory (as it also happens with
supersymmetry,?* for instance). It seems to be an interesting
subject worth further research.
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The natural role played by coherent states in the geometric quantization program is brought
out by studying the mathematical equivalence between two physical interpretations that have
recently been proposed for this program. These interpretations are based, respectively, on the
modular algebra structure of prequantization, and the reproducing kernel structure of phase
space quantization. The arguments are presented in this paper for the particular case where the
phase space of the system considered is the cotangent bundle 7 *M of a homogeneous manifold
M, and for didactic reasons, the latter is taken to be a real vector space.

I. INTRODUCTION

The purpose of this paper is to propose a synthesis
between two approaches,'? developed separately by the
present authors, to Schrodinger quantization. In the process
of this synthesis, a new element will be brought to light,
namely the central role played by coherent states in justifying
the choice of polarizations that are made in both the modular
algebra approach of Ref. 1, and the reproducing kernel ap-
proach of Ref. 2. We postpone to Sec. IV the discussion of
the physical interpretation of these polarizations in terms of
measuring processes.

In Ref. 1, one starts by associating to the prequantiza-
tion map (see Refs. 3-5, and references cited there to the
development issuing from the work of Souriau and Kostant)
a representation % of the canonical commutation rela-
tions (CCR) algebra, acting on the Koopman Hilbert space
H'r = L?*(T*M), where M is the configuration space of the
system, and T *M is the cotangent bundle of M. This repre-
sentation will be written out explicitly at the beginning of
Sec. IT (where, for the sake of simplicity, we will work with
one degree of freedom only). The transition from prequanti-
zation to the usual Schrodinger quantum theory is then
made by giving a prescription for isolating irreducible sub-
representations of # .. This is achieved by exploiting the
existence of atomic maximal Abelian von Neumann subalge-
bras o of # . To each such subalgebra .+ is associated a
faithful normal state ¢ on # ., which in fact is a vector
state; the corresponding vector @ is both cyclic and separat-
ing for # 1. A KMS structure® is thus associated canonical-
ly to the pair {# ., #} and ./ turns out to be the centra-
lizer of %" with respect to ¢. Conversely, each normal pure
state on ./ is shown to lead, in a canonical manner, to an
irreducible subrepresentation of # ..

In Ref. 2 one studies a representation U, of the extended
Galilei group G on L ?(T*R?). This representation is ob-
tained by starting with a representation of the CCR algebra
% on L ?(T*R?), and then by extending it to a representa-
tion of G. A complete decomposition theory of U, has been

* Permanent address: Department of Mathematics, University of Florida,
Gainesville, Florida 32611.
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worked out in Ref. 7 (see, in particular Theorems 2.1-3.4),
using the technique of reproducing kernel Hilbert spaces.
Picking out from this decomposition, specific irreducible sub-
representations of Uy, corresponds again to the passage from
prequantization to the usual Schrodinger representation.

iI. REDUCTION THEORY AND COHERENT STATES

We consider two Hilbert spaces
Hr=L*T*R,dpdq) and & ,=L*(R,dk), each sup-
porting a specific representation of the CCR algebra #". Let
% (F7r ) [resp. % (5,)] be the group of all unitary opera-
tors on ¥ (resp. 777, ).

(1) On 7, let

W (0, Q)eT*R-> ¥ (p, Q)X (F )
be defined by

(¥ (o, V)P, q")

=exp{(i/A)p(¢ — Y P —p. ¢ —q), (2.1)
for all ¥e# .. Then
¥ @ua) ¥ (02 q)

= CXP{(i/ﬁ)quz}Vr (2, + P29 +q2), (2.2)
¥ r(p,q)* = expl(i/B)pg} ¥ + (—p, —q). (2.3)

Upon differentiating (2.1), we define two self-adjoint opera-
tors P and Qr, namely

Po= —i#-2 and Q. =q+ii-, (2.4)
dq dp
with common domain of essential self-adjointness in 57,

and such that
# v (p, q) = exp{ — (i/#)qPr Yexp{(i/f)pQr },
Y(p, g)T*R, (2.5)

and

[Pr,@r] = —#l. (2.6)
The representation # - of the CCR algebra thus defined on
#r is reducible, and we shall soon exhibit special operators
on J7°- that commute with all #7 (p, ¢) [see (2.18) and
(3.1) below].
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(ii) On 5, let
¥ (p, )ET*R-VY  (p, q)e% ()
be defined by
(7, (p, V) (k) =exp{ — (i/f)kg}¥(k —p), (2.7)

for all We#,. Then ¥, also satisfies the algebraic relations
written as (2.2) and (2.3) for #7; upon differentiating
(2.7), we define two self-adjoint operators P, and ¢, name-
ly

P.=k and Q =iﬁ-—‘—9——,

s s ak

with common domain of essential self-adjointness in 5%,
and such that

Ws (P’ q) = exp{ - (l/ﬁ)qps}exp{(l/h)PQs},
VY (p, q)eT*R,

(2.8)

(2.9)
and

[P, Q] = —ifil,.

Note that %", is irreducible. 5
(iii) We next associate to every vector &%, with

IE |12 = 2t~ 2.11)
the partial isometry ?’5: Vet >V € 1 defined by
A NIND

- f dk eXp[i kq}E(k —p)*¥(k)
R #i

(2.10)

= (€79, W), with EPi=%",(p,q)E (2.12)
Note that
ViV, =1, and V,V:=P,, (2.13)

where the explicit action of the projector P is given by
PV 9

- J‘ L.R dp'dq' K, (p,q0', )Y (P, 4, (2.14)
with
K. (p, a0, q) EL dk exp[% k(g — q')]
X E(k — p)*E(k —p). (2.15)

A
Furthermore, the partial isometry ¥ intertwines the repre-
sentations #°; and # ., i.e,,

Yr@oV =V ¥, 0.0, Y@ QeT*R,  (216)
or equivalently
Vi .V =¥ .0, 0), Yo, 0T*R. (217)
Together with (2.13), (2.16) implies

[Pe, #+(2,9)] =0, Y(p,q)cT*R, (2.18)

so that P, reduces #".. We denote by 5, the subspace
P, r; by Ve: 5, -, the unitary operator obtained
from ?’;; by # ¢ the representation of the CCR algebra ob-
tained as the restriction of % to the stable subspace #°;;
by P, and Q, the generators of #7,, i.e.,

¥ ¢ (p, q) = exp{ — (i/#)qP,} exp{(i/B)p O, },

Y(p, q)eT*R. (2.19)
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We thus obtain
Y 0. q) =V, W,0, V% V(p,q)T*R, (2.20)

so that %7, is unitarily equivalent to %, and is thus irredu-
cible. Upon differentiating (2.17) and (2.20) we obtain

VPV, =P, and V0.V, =0, (221)
P,=V,P¥* and Q,=V,Q V% (2.22)
The operators
P, = —iﬁi and Q§=q+iﬁi (2.23)
dq dp

have a common domain of essential self-adjointness in 77,
on which they act irreducibly and satisfy the CCR, i.e.,

[Pes Qe ] = —ifil,. (2.24)
A choice of £, leads thus to a sort of polarization—a
point to which we shall return in Sec. IV.

(iv) In line with the Koopman Hilbert space formalism
for classical mechanics,® we also consider the two classical
(commuting) operators P® and Q ¢, of momentum and
position, respectively, defined by

(PY¥)(p, q) =pY¥Y(p, q),

(@) (p, 9) =q¥(p, 9).
Note that there exists a dense domain & C#° that can
serve as a common domain of essential self-adjointness for
Pcl’ ch’ Pgs ang Q§~

For every £€7%°, such that

P =182 dkk EcoP,

(2.25)

(2.26)

(@), =IE 1 [ ak st £ oy
are well-defined and finite, we obtain

VPV, =P,

?gé °',I>§ _o., (2.27)
where

zclEPcl + (P >§ = Ur (f)*PclUr (§), (2.28)

Q=0 +(Q)¢ = Ur ()*QUr (&),
with

Ur (=771 (P, (Q)). (2.29)
Equivalently

P,P'P, =P, and P,0°P,=¢,, (2.30)
or (see already Refs. 2 and 7)

P.PP, =P, — (P),I, = U,P, U},

P,Q°P, =Q; — (@)1, = U, Q. U?, 23D
with

Us =¥ :((P)e, (Q)¢). (2.32)

The operators (2.31) satisfy the CCR, and indeed when
(P); =0=(Q), (cf. the discussion at the end of this sec-
tion), they coincide with the reduced operators (2.23).

Let us analyze next some special features of the subspace
¥, which carries the irreducible representation %7 of the
CCR algebra.
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(i) For each £, the set
Fe={E"(p, 9)eT*R} (2.33)

of vectors £ » %€, appearing in (2.12) is overcomplete, and
constitutes a family of generalized coherent states in the
sense of Klauder® and Perelomov.!® For each Borel set
A CT*R, let us define a positive operator

4, (A) = f dp dg|E» %) 7).

The set of operators @, (A), for all Borel sets AC T'*R, then
constitutes a positive-operator-valued (POV) measure, in

the sense that the following measure-theoretic properties
hold:

(2.34)

@, (D) =0 (where D denotes the null set), (2.35)
JeJ jel
Moreover
3, (T*R) =1, (2.37)

In (2.36), Jis a discrete index set, A; NA; =&, for i#j, and
the convergence of the sum holds in the weak operator topol-
ogy. In view of (2.37), we call 3, a normalized POV mea-
sure.

(ii) for each (p, g)eT*R, congi_dcr the vector £77
€% ¢ CJ¢r obtained as the image of £ ” ¢ under V. From

E=VE

£p,q) = (EPE), (2.38)
E79=W: (b, 98,

we conclude that the set
Ze={£7(p, ¢)eT*R} (2.39)

is overcomplete in #°; . Moreover, on #°r we have the POV
measure

a;(A)=Va, (A)V?

=Ldpdq|§"")(§""’)|, (2.40)

with
a;(T*R) = P,. (2.41)

(iii) The action of P, on a vector VY&#" is given via a
kernel K.: T*RXT*R-C:

(Pg\l')(p,q)=f dp'dg' K. (p, ;0. )Y (', ¢,
o (2.42)
where
K (pg; ', q') = (EP9IEPT). (2.43)

In particular, K, is a reproducing kernel, since it enjoys the
properties'!'?

K. (p,q;p,9) >0,
K.(p,q;0,9)=K. (P, q'; 0, )%

(2.44)
(2.45)
K:(pa;p,9) = L " dg" K. (P g;p"q")

XK (p",q"; P, q'). (2.46)
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Specifically, (2.46) is called the reproducing property, since
it leads to the consequence that K, acting on any vector
V e ¢» reproduces the same vector, ie., for all
(p, )T *R:

L‘ . dp’'dg'K. (p,¢; 0, )V (P, ¢) =¥, (p, q).
(2.47)
(iv) The existence of the reproducing kernel K, on %,
is, in fact, an intrinsic property of the latter. This is made

more transparent if we use (2.47) to define, for each
(p,@)eT*R, a bounded, linear, evaluation map

- E}% ;- Csuch that, for all V. e,

E2, EL' . dp'dq'K. (p,q; 0, 4)¥: (0, q'), (2.48)
ie., see (2.47),

E2W, =¥, (p, ). (2.49)

In fact the vectors L 7 e ¢ can be chosen to be continuous
functions of (p, g) such that

e (0, 1< QCrf) || ¥, ll, V(p,q)eT*R.  (2.50)

In terms of E% 7 and its adjoint map (E% ?)*: C—2,, one
may write'?

K. (p,g:p',q)=EZUEL )",

a.(A) =J;dp dq(EZ%)*ER".

(2.51)
(2.52)

Thus, it is the existence of the bounded, linear evaluation
map E% ? on 7, for each (p, g)eT *R, which leads to the
existence of the reproducing kernel X, the associated POV
measure a,, as well as the generalized coherent states £ %
indeed, by (2.12), (2.38), and (2.43),

K. p.g:p,qd)=E"7(p,q). (2.53)

In its turn, the existence of E £ ?is a consequence of a simple
measure-theoretic property of ;. The space #°1 consists
of vectors that are really equivalence classes (with respect to
the measure dp dg) of functions [W¥], i.e., two functions ¥,
and ¥, belong to the same equivalence class [¥] if and only
if ¥,(p, ) = ¥Y,(p, q) almost everywhere. In each equiv-
alence class [¥] we may choose a representative function ¥
to denote the class. However the choice [V )W cannot be
made linear for the whole space 7#°1.. Yet on the subspace
H g, the restricted map [W, ]—W, is linear. It is this associ-
ation that then defines the evaluation map E % 7 and hence
the kernel K. Moreover, the vector £, which in view of
(2.38)—(2.41) we call the resolution generator for ¥ g 1S
unique. In other words, a bounded, linear, association
[W]—V on a subspace of #° determines’ a unique vector &
in that subspace and a resulting reproducing kernel K.
Thus with £, asin (2.11) and £ being given by (2.38),
the association &—K ¢ is one-to-one.

We next see how #- can be completely decomposed
into irreducible subrepresentations of the type #”; just ana-
lyzed. For this purpose, let { £,|n€Z*} be a basis in ¥,
normalized so that

& &) = Qri)'5,,. (2.54)
To each £, we associate the reproducing kernel Hilbert
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space ¥, =¥ C H'r, the image of #, in 77 through
the partial isometry V, =¥, defined in (2.12). Then [for
instance as a consequence of Theorems (2.1) and (2.2) in
Ref. 7], 7+ decomposes as the infinite direct sum

HKr= 0, (2.55)
ndﬁ'

i.e., #° decomposes into mutually orthogonal subspaces of

continuous functions. Denoting by %, the restriction of

# v to the stable subspace 57,, we also have, for all

(p, )T *R,

Yr@.)= & ¥, (2.56)

Each pair {#°,, #, } constitutes the GNS representation
of the CCR algebra %, built from the pure state ¢, on ¥~
defined by

(@n; ¥, 9)) =20HE, | ¥ '+ (p, D& )- (2.57)

The arbitrariness in the choice of the basis {£, |n€Z* } in
2%, implies that the decomposition (2.55) and (2.56) is not
unique. In particular, it is always possible to choose this basis
(e.g., take the harmonic oscillator wave functions) in such a
way that the relations (2.31) hold with

(P)y, =0=(Q);, VneZ*, (2.58)
ie.,
P, PP, =P, = — -2
5,. En - gn - aq ’
! ezt (2.59)

each of these pairs acting irreducibly [cf. (2.20) or (2.22)]
in the corresponding Hilbert space %, =7, ; moreover,
see again (2.55) and (2.56). Note also that if we take R> as
our configuration space, then the rotational symmetry ex-

ploited in Ref. 7 automatically ensures (2.58), and hence
(2.59).

ill. MODULAR ALGEBRAIC STRUCTURES

The analysis of # - in Ref. 1 is based upon the observa-
tion that 7. supports a second representation of the CCR,
generated by the operators

5 o 0 A . d

P Azﬁan p and Q tﬁap.
Since both P and Q commute with the generators P and Qr
[cf. (2.4)] of # 7, they generate an algebra that liesin # 1.,
the commutant of % .. An application of the Tomita—Take-
saki theory of modular algebras® to an analysis of %+ then
shows that P-and Q do, in fact, generate #7.. We briefly
review the aspects of the Tomita-Takesaki theory that are
relevant to our analysis.

(i) If @ is a cyclic (i.e., [ # '+ P] = #° ) and separat-
ing (i.e., AD = 0 and 4e ¥ imply A = 0) vector for # .,
then the antilinear map

Se: WOEH [ OCH s Wrde W r OCH (3.2)

is closable. Its closure, which we again denote by Sy, , has the
polar decomposition

Se =J¢A¥2,

(3.1)

3.3)
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where Jy is an antiunitary operator satisfying

Ji=1 J, =09, (34)
and A, is a self-adjoint operator. Moreover, the map
WJo Wig is an antilinear isomorphism from % 1 onto
# 1. It is this property that leads to the presence of Pand Q.

(ii) The faithful normal state ¢ on % - defined, with ¢
asin (i), by .
is a KMS state for the one-parameter group of evolution
t—a,(t)on #r,

Wsa, (1) [W] = Ay “PWALP (3.6)
(for further details and the analyticity properties of a,,, refer
to Ref. 1 for the particular case studied here, and to Ref. 6 for
the general theory).

(iii) Defining the centralizer .# , of %", with respect
to @, as the von Neumann algebra

/wE{AGWr|(¢; (4, W])=0, VWe¥ .}, (3.7)
one has, in addition,
M, = {4e¥ |a¢(t) [4]1=4, VteR}. (3.8)

The analysis in Ref. 1 then establishes that every faithful
normal state @ on ¥ - is a vector state, in the sense of (3.5),
with the corresponding vector ® being cyclic and separating
for # 1. Additionally, whenever ¢ is nondegenerate the
centralizer .# , is a maximal Abelian, atomic'® von Neu-
mann subalgebra of #. Conversely, every maximal Abe-
lian, atomic von Neumann subalgebra of % . is the centra-
lizer of a faithful, normal, nondegenerate state, and thus is
obtained from a cyclic and separating vector.

Irreducible subrepresentations of % are then ob-
tained in Ref. 1 by using normal pure states on such maximal
Abelian, atomic subalgebras. The decomposition theory of
# "+ hence reduces to the problem of isolating the maximal
Abelian, atomic von Neumann subalgebras of % or, what
amounts to the same thing, the faithful, normal, nondegen-
erate states on # .. The existence of several such states
leads, in this scheme, to the nonuniqueness of the decompo-
sition of # - into irreducible representations. Equivalently,
the nonuniqueness of the decomposition reflects the exis-
tence of different evolutions (3.6) with their attendant KMS
structures.

We now make explicit the link between this modular
algebraic analysis of % and the analysis made in Sec. II,
where reproducing kernels played a central role.

Let us fix a decomposition of # - according to (2.55)
and (2.56), i.e., let us choose a basis

{&,|neZ*}C o7,

satisfying (2.54); we consider the corresponding orthogonal
set

(3.9)

{é—nEi}nEnlnez-F}C%r' (310)

Foreach neZ™, £, is a resolution generator for the subspace
7 ,,and :

&, (p,q) = (EP9E). (3.11)
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We fix, in addition, a sequence
{A,|neZ*} CR

such that 4, >0, VreZ*,

A, #A,,, whenever n#m,

> A,=1 (3.12)
neZ*
We finally construct in #°- the vectors
Q= (27H)'? ¥ A%, (3.13)
neZ*
Y=Y (p, )P
(3.14)

= (2mh)'/? ; ANERS,

The following picture now emerges.
(i) @ is a cyclic and separating vector for # ., and

(@ ¢ (0, 0)) =(®| ¥+ (b, )P) (3.15)
is a faithful, normal, nondegenerate state on # .

(it) From the discussion of the modular algebraic struc-
ture of 77 in Ref. 1, as outlined above, it follows that every
faithful normal, nondegenerate state @ on # can be ob-
tained from the following prescription: find a basis (3.9)
satisfying (2.54); construct the resolution generators
&,657, using (3.10) and (2.38); and define ® and ¢ asin
(3.13) and (3.15). In this connection, we note also that if p,
is the density matrix on 77, for which

(@7 @) =Tr{p, # . (0, )},
then

P,,, = (2'ﬂ'h) E A'n |En>(£n)|'

neZ*

(3.16)

(3.17)

(iii) Corresponding to a given ®, the von Neumann
algebra .#, C %" generated by the projectors

P, = (2r#)|£, ) (£, | (3.18)

is atomic and maximal Abelian, and it is the centralizer of
¥ with respect to ¢. Thus, the nonuniqueness of the de-
composition (2.55) and (2.56) (and hence of the choice of
polarization) is due to the availability of different atomic,
maximal Abelian von Neumann subalgebras of % .. Con-
versely, in view of Proposition 3 in Ref. 1, each atomic, maxi-
mal Abelian von Neumann subalgebra of % determines a
decomposition of the type (2.55) and (2.56). It also follows
from this proposition that every irreducible subrepresenta-
tion of # 1 is of the type #7, i.e., is obtained [cf. (2.18)-
(2.20) ] as the restriction of # - to a stable subspace of the
type #, which is thus a reproducing kernel Hilbert space in
Fr.

(iv) The mapping Sy, in (3.2) and (3.3) can be explicit-
ly computed in the context of the decomposition of # -
given by {£,|neZ*} and @. Indeed, the set
{<I>P"’| 12 g)eT *R}, with ®”? defined in (3.14), is total in
Fr, and since

Se ¥ r @, )P =¥ (p,q)*?, (3.19)
we obtain, for every (p, ¢)eT *R,
Sg @9 = exp{(i/#)pg} 7 ~9, (3.20)
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and, for every pair {(p, 9), (¢, ¢') }eT*RXT*R

(V7|5 3979 = exp{(i/A)p'g D 7" ~7|D»9),
(3.21)
so that the closability of S, is transparent in the particular

case at hand. We note, next, that for each meZ™* the set of
vectors

{&mn=VnE,|neZ*} (3.22)
forms a basis in 57,,,, with

Emic|Em) = QmA) ™1 8. (3.23)
Also, as vectors in 57,

Ern (0, ) = E5IIE,)

= exp{(i/B)pgYe,, (—p, —)*.  (3.24)

Using these preliminary results, one computes

Jobmn =Em> YN, meL”, (3.25)
and for all Ye#°, ‘

(Jo W) (D, q) = exp{(i/A)pq}¥( —p, —q)*. (3.26)
Furthermore

Bobum =Anh i um> (3.27)

and J,, transforms the operators Pr. and Qr in (2.4) into the
operators P and Q in (3.1); specifically

JoPrJp = —iﬁ—g——p=?>,

9 A (3.28)
JoOrJop =ih—= o
dp
to be compared with
Jo ¥ v =HF. (3.29)

A
Note that the commutation relations satisfied by Pand o
namely

[2,0]= +ifil; (3.30)

differ by a sign from the CCR in (2.6), as is to be expected
from the fact that J,, is an (involutive) antiunitary operator.
This makes explicit the remark opening this section.

IV. GEOMETRIC QUANTIZATION REVISITED

In view of the analysis carried out in the previous two
sections, the geometric quantization program can be de-
scribed as follows. ]

(i) The primary object of the theory is the configuration
space mariifold M. In this paper, M was taken to be a vector
space; this circumstance does simplify the presentation of
the arguments; these, however, extend to the case where M is
a homogeneous manifold, see, e.g., Ref. 14 for the setting of
the problem in this more general framework. Furthermore,
the quantization procedure outlined in (iv) below general-
izes as well to situations where I' is not necessarily a cotan-
gent bundle, see, e.g, Ref. 2. The cotangent bundle
" = T*M equipped with its canonical symplectic form o,
and the associated Poisson bracket {-+, - -}, supports the
Hamiltonian formulation of classical mechanics. In particu-
lar, the elements of the C*-algebra C= (T"), of complex,
bounded, infinitely differentiable functions on T, are inter-
preted as the classical observables of the theory.
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(ii) The space T*M is naturally equipped with a mea-
sure v, so that H. = L (T *M, dv) is a canonical object of
the theory, which Koopman® already took as the starting
point of his Hilbert space formulation of classical Hamilto-
nian mechanics. This space is also taken as the starting point
for the quantization procedures discussed in this paper.

(iii) In addition to the Abelian involutive algebra struc-
ture defined on C= (I') by pointwise addition, multiplica-
tion, and complex conjugation, the Poisson bracket equips
C= (I') with a Lie structure. This structure is captured in
the composition laws of transformations of Hy-, defining the
prequantization map,*~ that associates to every feC= (I"),
the first-order differential operator

P(f)= —ikVy +/, (4.1)
where V denotes the covariant derivative, and X is the vec-
tor field canonically associated to / by the symplectic form
won T*M:

The remarkable property of the prequantization map is that
it satisfies the following requirements of the Dirac problem:

Plaf+Bg) =aZ(f)+BZ#(g), (4.3)
Z) =1, (4.4)
2 f,8H) =1Z(f), Z@))/ih (4.5)

for all £, geC~ (I'), and all &, BC. In (4.4), 1 denotes the
constant function with value 1€R, and I~ denotes the identi-
ty operator on #°r; in (4.5), {f, g} is the Poisson bracket
between fand g, and [4, B] is the commutator 4B-BA of the
operators 4, B on 5. However, in contradiction with the
operators P, and Q. [cf. (2.8)] of the usual Schrodinger
formulation of quantum mechanics the operators & (p) and
Z (q) [obtained by natural extension of (4.1)] do not gen-
erate an irreducible algebra; it is in fact impossible (see, for
example, Ref. 14 for a streamlined proof) to find a map that
would satisfy this last requirement, together with (4.3)-
(4.5). Moreover, the usual (Jordan) algebra structure of
C= (I'), provided by the composition law f - g, given by
pointwise multiplication, does nof carry over to the ordinary
composition of transformations of 5#°.: the composition of
two first-order differential operators is not, usually, a first-
order differential operator! This is precisely where the Hil-
bert space formulations of classical and quantum mechanics
differ, and it is also where our quantization procedure differs
from the usual geometric quantization procedure: we focus
on the operators Pr. = Z(p) and Qp = #(g), which
satisfy (2.4) and (2.6)/(4.5), and we define from them, us-
ing the usual composition laws of transformations on 57,
the Weyl algebra

Wl‘ E{Wr (P’ Q)|(P, Q)GT*R}",
with # . (p, q) defined in (2.1). Note that # . is isomor-
phic, as a von Neumann algebra, to

¥, ={¥,(p.9)|(p, q)eT*R}”

with %7 (p, q) defined in (2.7); we denote the abstract W *-
algebra % =~ %", by #". Consequently, all predictions
made from a formalism that takes # - as its basic object will
be the same as those made from the usual Schrodinger repre-
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sentation %", of the CCR. The question therefore is to deter-
mine whether the choice of %, rather than # - is only a
historical accident, or whether %", can be selected out on
physical grounds. Mathematically, # . and % are both
obtained as GNS representations of the CCR; # ., how-
ever, arises from faithful normal states on %", while #°,
arises from pure normal states on this / *-algebra of quan-
tum observables. Physically, rather than giving a prescrip-
tion to extract %, from Z(C> (I')), we choose to give a
prescription to extract %, from # -, the latter being ob-
tained from Z2(C= (I")) as just indicated. We further show
[cf. (2.27)-(2.32)] how the resulting operators P, and Q;
are linked to the Koopman operators P and Q.

(iv) The quantization procedure that emerges, and that
we consider to be a reinterpretation of the geometric quanti-
zation program, will be shown to provide a way to discrimi-
nate between various ““correspondence principles”—or “or-
dering rules”—on a physical basis, namely quantum
measurement processes. It is first to be described mathemat-
ically as follows.

(a) Realize the classical algebra of observables C* (I')
as multiplication operators £ on #°.,

@) =f ¥ q),

for every feC= (I') and all Wes# .

(b) Identify, in -, a reproducing kernel Hilbert sub-
space H# 'y = Py #+ (denoted 7, in Sec. II), with kernel
K and projector P, and having the further property that
K (¢, £') is separately continuous in § and ‘€T *M.

(¢) Quantize, using the linear map

7 feC = (Dof =P fPLeL (Hx). (4.7)

Associated to ##x, there is a POV measure a,, defined on
the Borel sets A of I', and it can be shown? that

J = fr F(©)dax (©).

From the general theory of reproducing kernels,'? it fol-
lows that the set of vectors

(4.6)

(4.8)

Fx={keH k|G, £5(EN) =K, Y (49)
[cf. (2.53)] is overcomplete in ', and, in fact,
ax(A) =f dv(O) €SI EL (4.10)
A

We call the vectors £ 4 €.% ;. generalized coherent states, and
indeed, as noted earlier, in the case at hand, vectors of the
type (2.38), which enter into the definition (2.43) of K, are
coherent states in the sense of Klauder® and Perelomov.'®
Since the resolution generator £ in (2.38) determines all the
coherent states £” ¢, we denote the kernel by X, in this case,
and see now clearly the crucial role played by the coherent
states in the quantization procedure. Indeed a choice of X
amounts to a choice of £, and hence to a determination of the
family of coherent states %, and vice versa.

We further want to draw attention to the following addi-
tional features of the quantization procedure outlined in
(a)-(c) above. First [cf. (2.31)],

[7% (), 7% ()] = — i#img (1),

with 72 (1) = I, (4.11)

S. T. Aliand G. G. Emch 2941



where I, is the identity operator on #°k; in the above
expression, the domain of 7% has been straightforwardly ex-
tended beyond C= (I") using (4.8). Second, going back to
the classical operators P and Q@ [in (2.25)] and to the
prequantized operators Pr and Qr [in (2.4)], when the
reproducing kernel X, with generator £, is chosen (cf. the
discussion at the end of Sec. II) so that (P), =0=(Q),,
we have

P PPy = P P Py, PyOPy =P,0OrPy (4.12)
This demonstrates explicitly the sense in which a choice of K
implies a choice of polarization.

(v) A last comment on the physical implication of the
choice of the generator £ of K, and hence of the polarization,
ought to be made here. For an arbitrary classical observable
/f, its quantized form P, f o PP, involves a specific ordering of
the operators P, and ;. To see this more clearly (cf. Ref. 2
for a detailed discussion, for the realization of specific order-
ings by “closed form” integral transforms, and for references
to the extensive literature on the ordering problem), let f be
a finite-degree polynomial

f@2.9) =73 ™" (4.13)
where c,,,, are :é):lstants. Then

P, [P, = 2 CmnG T "(Py, Qp), (4.14)
where [cf. (4.8)]

Gr(Ps Q) =Lp"’q" dag(p, 9), (4.15)

is a polynomial of highest degree m in P, and n in Q, . The
order in which the operators P, and Q, appear in
G 2 "(Pg, Q¢ ) depends on the POV measure a,, and hence
on the resolution generator £. For instance, if £ is taken to be
the ground state wave function of the harmonic oscillator,
then the quantized operators (4.14) are antmormally or-
dered, i.e., each monomial of the form

(z*)"z" with z= (2#) V% (q +ip) (4.16)
is mapped to the operator monomial
(@*)ma" with a= Q#) ~"3(Q, +iP;). (417)

As a further observation, we point out that a specific
ordering is a reflection of the measuring apparatus used in a
joint determination of position and momentum of the phys-
ical system. If the wave function of the state of the system is
V.5, then®

[ o.08 = [ a0 o @rF@P

and

f dq|¥ (p, )|’ = L dp' 2, ()P () %

R

where ¥ = V7 'W,e5,, ¥ is its Fourier transform, and
X (@) =xo(g' — @) =@ — ), (4.20)

2, =xo@ —p) =5 E@ — )3, 4.21)
Ebeing the Fourier transform of £€e57,. These equations

(4.18)

(4.19)
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show that if we interpret |W, (p, ¢)|” as the joint probability
density for locating the systém at the point (p, g)eT’, our
apparatus allows us to measure it only up to an imprecision
given by the probability distribution ¥/, in momentum, and
the probability distribution y, in position. Furthermore,
consistent with the uncertainty principle, the product of the
standard deviations satisfies

o(¥,) o(x,)>h/2. (4.22)

In the equivalent quantization procedure, as it now
emerges from Ref. 1, the above discussion translates into the
statement that the choice of a maximal Abelian, atomic von
Neumann subalgebra .« of # . corresponds to the choice
of a class of orderings, one for each £, appearingin (3.13).
Choosing a specific £, (see Proposition 3 in Ref. 1) to get
one irreducible subrepresentation %, , from the decomposi-
tion of # - associated to ./, amounts then to selecting one
specific ordering, and thus one specific classical measuring
apparatus. Note that if the system has been prepared in a
faithful, normal, nondegenerate state @, then the choice of
the maximal Abelian, atomic von Neumann subalgebra </
of #° is uniquely determined by the requirement that
@ % =@, where ¢ % is the state obtained from @ by the
finest partitioning compatible with o/, defined in accor-
dance with Ref. 15 by

Pov= 2 AaPns

nezZ*

(4.23)

with
(p; F. WF,)
(p; F,)

and {F, |neZ*} is the partition of the unit Je #” into mini-
mal projectors (i.e., atoms) of «. Indeed, the requirement
@ % = @ isequivalent'Stohaving & = _# _, the centralizer
of % with respect tog definedin (3.7). Asopposed toa von
Neumann reduction ¢ —@ %, a measurement is the subse-
quent filtering out of all but one ¢,,, or equivalently one F,,
and thus here one &, . Hence, the polarization is indeed de-
termined by the physical situation at hand.

A=(@; F,), @,: We¥ — eC, (4.24)
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The H-atom Green’s function is calculated in an n-dimensional Euclidean space, following the
Feynman Lagrangian formulation. The use of generalized polar coordinates allows the
expansion of the propagator into partial propagators, and the separation of the angular and
radial variables. The angular part is shown to be a generalized Legendre polynomial while the
radial part may be transformed in that of the harmonic oscillator. The H-atom spectrum is
given by the poles of the Green’s function.

i. INTRODUCTION coordinates (7,6,4‘",...,4”), by means of the following

The Feynman functional integrals are used toobtainthe ~transformation:

Green'’s function of an H-atom in an Euclidean space having xV =r cos @,
dimension n = p + 2 (n>2). Within an n-dimensional polar
coordinate system, we first split the propagator into partial
propagators, in order to separate the radial part from the x® =r sin 8 sin ¢ cos ¢,
angular one. The angular part merely is a generalization of
the Legendre polynomials, and by means of a variable

x@ =r sin 6 cos ¢V,

. @E+D — pcin Bsin &V sin ¢ - -sin 4@~V @
change, the radial part can be reduced into that of the har- xF* D =rsinOsing’" sin § sin ¢~ " cos p7,
monic oscillator in a centrifugal potential. The H-atom spec- x?*2 = psin @ sin ¢V sin -+ -sin ¥~V sin ¢,
trum is obtained from the poles of the Green’s function. The (1)

case n = 1 is deduced from the general case. The present with
paper gives, to the best of our knowledge, the first path inte-

gral derivation of the n-dimensional Coulomb Green’s func- 0<r< e, 0<6<7,

tion. 0, i=12,..p—1, 0<d®P2r,

and

rP= ZF:Zx“)’ .
il. PARTIAL PROPAGATOR DECOMPOSITION OF THE i=1

n-DIMENSIONAL PROPAGATOR OF A CENTRAL It is readily shown that the Jacobian of this transformation is
POTENTlAL V(r)= —alr _ a(x(l)’x(z)"“,xw_'_z))

Consider a particle, having the mass m, and moving in - a(r.6, ¢(1)’_"’ I
an n-dimensional Euclidean space, in an n-dimensional cen- o 1 A1) P2 A2 . .aie A1)
tral potential ¥(r) = — a/r, where r stands for the »-di- =rf* sin® Osin®~ " §° sin" 7" 419 -+sin @ :
mensional radius. Let n = p + 2>2. The Cartesian coordi- In Feynman’s Lagrangian formulation, the kernel is given,

nates (xVx®,..x?*?), are related to the polar,  in Cartesian coordinates, by the following path integral’:

. T
K(ryr;T) = f DxV) DxP (1) Dx®+2 (1) exp[—;—f (% p2 V(r))dt }
0
N

] m N(p+2/2)J'N—1 i m . -
= lim | ——— dxVdx®-dxP+Vexpl— ¥ — [(xP —x{))
N (2i17'ﬁ6> II a7 dx; g Pl% ,-; 2 L7~

i=1
+ (P —xP )+ (PP —x[P12)?) —6V(r,-)] :

In polar coordinates, this propagator is written as follows:

_ m \Ne+2/2 fN-=1 P < p () ginP—1 (D
KrprsT) = lim (2i1rﬁe) JH (dr; rp* 1) (d6; sin® 6)) (dgfV sin” =" ¢V

X (A sin? =2 ¢P) -+ (dgP~ ¥ sin®~ Vg, ) (dgSP)

=1

. N
Xexp[é- 21 -;% (7 +r_ =21, cos 6,-,,-_,)] ——eV(r,-)] ’ @
=
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where
l.f = r(tf) = (rfs€f9¢(”y ,¢(p) y L= l'(ti) = (r,.,t9,., ‘gl),m, l(p)) ’
=yt), y=(r04",..6%), T=Ne=N(t;,—t,_,)=t—1,

and
IS . . .
cos®,;, | =———=cos G;cosf,_, +sinf;sinf;,_, cosy;;_,,
Ty
cos ¥{)_, = cos ¢} cos ¢/, + sin ¢”’ sin ¢/, cos y{2_, ,
- . M . (3)
] 1
cos ¥{7_, = cos ¢{” cos #{” | + sin ¢{” sin {7, cos ¥},
: : (1<r<p —2),
—_— — — — 1
cos yET = ¢“’ D cos @211 +sin gP~ P sin gP PV cos(P — ¢P)) .

However, this expression (2) is not suitable for integrating, because of the occurrence of the mixed term
— (i/fi)(m/€)r;r;_, cos ©;;_, in the action. However, by means of the formula

exp(u cos ©) = (2/u)T () 3 I+ W1, ,(@)C}(cos©), v#0,—1,—2,.,
=0

wherethe I, , , (u) are the modified Bessel functions* and the C}(cos ©) are the Gegenbauer polynomials® that generalize the
Legendre polynomials, the expression (2) is split into a radial part and an angular part:

m \Ne+272 1 3 D 401 1 o 1
211rﬁe) H (dr; rf+ 1) (d0; sin 6;) - (dgp{V sin? D ¢V} -+ (dp® ~V sin /P~ f)(d¢}P))

Xexp[— [ (r2+r?_1)—eV(r)” [( 2ike )vr(v)
J—l 2e ji=1

mr;r;_ 4

K(l'f,l',,T) = hm (

i=1

mr;r;_
xz { +v)I,j+v( :ﬁfe ‘)C;(cosej,,._,)]

L=0

m \Ne+272 w N-1 .
= i e P+
= hm( . ) > _ ) I @nrfth

Il g =0 i=1

Noow 217Tﬁ€
m mr,r;_ 2ifie \
—;(rf+f}_1)—€V("J)” H11;+"( jﬁ; l)(mr.r 1)

Jj=1

X exp[

1—-1

N—1
H (d6; sin®6;) (dgV sin® = ' ¢fV) -+ (d@? ~V sin ¢F ~ ) dgp{® H LT +v)Ci(cos©;,;_,).
j=1

i=1
(4)
Let

— —~ n!(fl + ,V)22v—— 1 )1/2
Ci(cosO,;,_)=TW)(n+v)C}(cosB,,;,_,),Cr(cosa =(—————— C'(v)Cl(cosa).
( . i—1) () ( )CH( i—1) ( ) T2y + 1) (MC( )
In order to integrate over the angular part, we give to v the fixed value p/2, and we separate all the
0,,0{",...07 ~ 2,6~ 1,6 integrals, by applying the addition theorem® to the relation (3):

1’ _] Jrrey
2
C??(cos © 1)

k k
'p—2 p— 1
. . k. . . _ . - k
=277 2 z z Z (sin @, sin 6,_,)" (sin g{" sin ¢{; )*=- - (sin P~ sin g# 2 ) > ~?
ki=0ky=0 kK, i=0m="Tk,_,
~p/2 4+ k pr2+k w—12+k )
XCu i, ‘(cost9j)C,,_,cl ‘(COSGj_x)Ck,_k, *(cos ¢; )
= (p—-1)/2+k 1 1+k 2 14k, _
><C,¢|_k2 *(cos ¢f, ey (cosgP=?) C M ml  (cosgfPi?)

(¢(p—l) (p))Yk (¢(p—1) (p) ).

The orthogonality of the C v, functions, and of the spherical harmonics ¥ COR
fo da sin” aC}(cos @)C}, (cosa) =8,,, , f YrQ)YrQ)de=:5,56,,, ,
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allow us to calculate the angular part of the propagator (4):

H (d6; sin® 6,)(dg(V sin®~ ! (V) --dQ), H C”’z(cos 6,,_1) = ma**)¥ = 1C#?(cos Oy )5, II 8y,

j=1 ji=1
with ©, 5 = (ro,ry) = (r;,r;). The propagator (4) is then expanded into partial kernels:

2 2I4+n-2) w2 —
K(r,r;T) = IZOK,(rf,r,,T) —4—(—-;;/2— (2 I)C,/2 Y(cos O,.,),

where

N(p+2)2 N-1
K, (rpr;;T) = lim (———'—'—'——) @*'mN | 1] a7t

(3)

(6)

N-ow \2imrfie ji=1
N itemr 1/2 _ 1 ] [
X I PT=1)| ex —(F+r_)—€V )] .
[,H (2mrr,_1) l+p/2 P ﬁj 1 ( ) — eV
The radial part in Eq. (6) can be simplified further, by taking into account the asymptotic behavior’ of the modified Bessel
functions:
4
1(2)z (55 el -3
€/e~0\27u € 2 u 4

This radial part becomes
K, (rpriT)

( 1)/2 N/2(N—-1 2
=(L)p+ lim( 'm ) II exp{ [ rj_l)z_______ﬁ’e ((I+£) _i)_eV(r,)“
et N-w \2irfie F=1 ,_1 2e 2mrir;_, 2 4

=(#)‘"‘””J.@r(r) exp[%J:[m—;—z-— 2:'2((1+——1) i)+;]:1t}-

lll. GREEN’S FUNCTION FOR THE COULOMB POTENTIAL
In order to calculate the radial part (7), we make use of the transformation (7,t) — (u,s) defined as follows:

dt
r=u? = =414%() .
ds
Then, by discretizing,
2 2
n=upon_=u_y, €=t~ =4(s; —s_Juu; | =4ojuu,_

The measure is then

m N/2 N m N/R22N-1 m N/2 1/21V—1
(Ziw'ﬁe) Il d”:(zm-ﬁe) 2, (2 )=<2iﬂ'ﬁe) (4uNuo)1/2 H ()" T

j=1 Jj=1 j=1

1/2N-—-1

du, .
(4uNu0)”2 H (mm,-) ,131 “

In the same way, the action S, when expanded around the mean position of the time interval [, j — 1], is equal to

m # n O |
SG,j— D ==(r,—r_,)>— ((1 _.._1) __) V(7 ]
(Jji—1 2JO ri_1) 62 — +—2 a + V(%)

m #
~m Aujz——a'j[ _ ((2l+n——2)2—l)—4a]
20; uju; L 2mau;
Au?
A — [—((2[+n—2)2——1)-—4a] m 2
20; 80, ﬁ

where
Xi=0+x_,)/2 AMx=x;—x;_
We introduce the energy E by means of the Green’s function (Fourier transformed of the propagator)

G(r,r;E) = f dTexp( Eﬁ )K(r,,r,,T) E G, (r;,r;E) L(n/2—1)Q2l+n—
=0

42
where the radial part G, is obtained by using the identity

2) C1?~(cos ©, ),
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© s’
4u,u,f ds' 6(’1‘ - 4f ds uz(s)) =1,
0 0

and the Mc Laughlin-Schulman procedure,® which allows us to replace the term (m/80;)Au}/#} in Eq. (9b) by a pure
quantum correction ( — 3#°0;/8m):

2 ® i
G, (r;r;E) = G (WA u%E) = f ds'e™ " Py (usu,;s')ds', 11
z(rfr ) 1( £ ) (ufui)"'”z b E\U4g ( )
with
, i (%, [mi? 7 1
Py (upu;;8") =f@u(s)exp [;—J;ds > ——Em—ug((21+n—2)2—-z—)+4Eu2” . (12)

If we change 2/ + n — 2 into A’ + v'/2 — 1, then Py (u,,u,;5') represents, except for the missing factor (1/u,u,)” =7, the
radial kernel® of the harmonic oscillator, having the angular momentum A ’, in a v'-dimensional space. After integrating
Pg(usu;55),'° Eq. (11) becomes

2 mo ¢ ,, 47" Mmouu; imew
Yy T, i f*2U4n-2 p

G, (uhusE) = —2
(w7 ) (upu;)"~2 ik Jo sin (ws') ifisin(ws") 2%

(2 + 1) cot(cos')} , (13)

where ima® = — 4E.
Let w = 2ifik /m, p' = — iam/#*k. Then, with the help of the formula''

® o eT¥e (xp)'? L +y+4)
d e (1/2)(x+y)cotth ( — M_ C (x u/~ , ,
J; qsinhq >\ sinhgq Pr 2y +1) IV iy 0)
whereM _ . (x)and W_ ,  (y) are Whittaker functions'?, the expression ( 13) can also be integrated, and the n-dimensional
H-atom Green’s function is written as follows:

T +n/2—4+p)
'ecl+n-1)
Ql+n-2)T'(n/2 -

4772
The poles of the Euler function I'(/ +n/2 —} + p'),l + n/2 — } + p' = — n,, withn, = 0,1,2,.., 0, determine the n-dimen-
sional H-atom spectrum:
EMN = —a*m/2#(n' +n/2 —3)*,

G(r,r;E) = %(rirf)“ —m72 Igo M_ iy (— 2ikr;)

XW _ gt nyz—1 (= 2ikry) D C{"~Ycos©,,) (r;>r). (14a)

where
n=n+Il+1=1+L1+2,.,0. (14b)

The expressions (14a) and (14b) generalize the results obtained in Ref. 13. It should be noted that Green’s function (10)-
(13) can be put into compact form.
First case (n = 2): With the help of the formulas'*

}lin; [(A)C%(cos ¢) = (2/n) cosnp, Ci(cosg) =1,

cos(z cos ¢) = 2'T'(v) i (=)"(v+ 2m)&—2%(i)- C3,.(cos @)
m=0 z

I +2 3 (=) (2)c0s(2mP) (v=0),

m=1
Eq. (14a) leads to

+ o F ’ im(af—— 8)
G(l’/,l',-;E) =?mk_ (rirf)—-l/Z z (lml +p0 + ) M—p’,]ml (— 21kr,)W (— 2ikrf)_e;2;_.’

m=t . TQ2m+1
6,— 6, = (rpr;) and rp> 7.

- p\im|

The Green’s function can then be written as follows:

4 o —2p'q + ik(rp+r)cothq 2k(r~r )1/2 i f
G(rpr;E) = th‘ dg £ cos [ i cos( J )] . 15

s i Jo F dinh g sinh ¢ 2 (13)
Second case (n>3): The use of the formulas'®
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1 )““” & T+
—kz| T (kz)=k* S ETD
(2 (kz) Igo IT(v+1)

I'2A +n)
C(n+ DHI'(24)

I'(24 +n)
C(n+1)L24) °

C%(cos ©) =

=(=-)"

2Fl(/u +1, - l;‘V-I— lykz)(ﬂ + 2l)Jy+21(z) s
ZF,(M +n,—mA+ -;—;sinz(—?))

Fl(?l +n,—nmA+ —;—;cosz(g))

2

allows the Green’s function to be put, in this case, into the following form:

) =(—1 "'_l_nl (1/4)(3—n) ] (n—1)/2 9” B-—m7s2 2 n
G(rf;riaE) - ( l) ﬁ (rfrl) k cos 2 2

exp{ — 2p'q + ik(r; + r;)coth g}

(16)

X‘ﬂ'“ —n)/2 J‘w dq
0

(sinh g) "+ D72

2k(rr)'? cos( o, )) .

o
n =32 sinh ¢ 2

Since J_ ,,, (z) = [2/72]'/? cos z, it can be seen that the expression (15) is included in (16).
The n-dimensional H-atom Green’s function (16) (n>2) is a generalization of the cases where n = 2 and n = 3, corre-
sponding to the Levi-Civita and Kustaanheimo—Stiefel transformations.'®!” In the case n = 1, the Green’s function may be

obtained from Eq. (16) (6,, —27)

B — 2k (xpx,) M2
GlxiE) = — ()2 f 9 _exp{ — 2'g + ik(x, +x,)coth g} _, (‘ ) ) :
# o sinhg sinh g
Since

2k . 1/2
J_(—2)= —il,( —iz), z=_£f.fo
sinh g

then

G(x;xE) = (m/AKT (@' + DM _ 1, (= 2kx )W _ 15 ( — 2ikx,)

with x, > x;. This result was already obtained in Ref. 18, by
standard wave mechanics. This one-dimensional Coulomb
problem may have degenerate levels.'® Furthermore, it is
easy to show, by using the identity*®

( d )'"(IV(Z))_IH,,.(Z)
zdz 2 )]

that the Green’s function (16) of the H-atom in an n-dimen-
sional Euclidean space, is connected with the (n — 2)-di-
mensional Green’s function, by

G"(x,y) = .__.I__Q_

G,_,(xy),
Zﬂyay"Z(y)

where x =7, + 7, and y = |r, —r;|. This relation was al-
ready given by Hostler.®

IV. CONCLUSION

The n-dimensional H-atom Green’s function has been
obtained as an expansion in partial Green’s function (14a)
and in a compact form (16), in the functional integral for-
malism. To our knowledge this is the first functional deriva-
tion of this n-dimensional Coulomb Green’s function. The
known results of the hydrogenic literature are recovered, in
the case n =1 (Schrédinger formulation!®), in the cases
n = 2,3 (Schrédinger and path integral’>'® formalisms, or
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phase space formalism'’), and in the general n-dimensional
case (Schrédinger formulation®).
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Time-dependent invariant associated to nonlinear Schrédinger-Langevin
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Via the quantum-hydrodynamical method, a time-dependent invariant associated to the
quantum dissipative time-dependent harmonic oscillator (TDHO), described by two classes of

nonlinear Schrodinger—Langevin equations with the following frictional nonlinear terms is
constructed: (i) W, = — ifiv(In ¢ — (In ¢)), which is the Schuch-Chung-Hartman frictional

nonlinear term, and (ii) W, = v{[x — (x)][cp + (1 — c){ p)] — ific}, which includes the
Siissmann (¢ = 1), the Hasse (¢ =), and the Albrecht-Kostin (¢ = 0) frictional nonlinear
operators. The associated invariant found is exact for the Schuch-Chung-Hartman and Hasse
models, and only approximate for the Siissman and Albrecht-Kostin models.

I. INTRODUCTION

Among the remarkable successes of the theory of time-
dependent invariants, as a manifold problem-solving tool in
several areas of physics, we point out its prime relevance in
connection with quantum physics.'~*? For instance, the in-
variant has been used as an artifact to construct an exact
solution to the associated time-dependent Schrodinger equa-
tion for certain types of potentials.

Methods that have been used for deriving invariants for
time-dependent Lagrangian/Hamiltonian systems include
Noether’s theorem, the Lie theory of extended groups, Er-
makov’s method, the theory of canonical transformations,
and the direct method.'*'* In addition, the present author
has recently introduced a new method, by extracting an in-
variant associated with the quantum time-dependent har-
monic oscillator, via the hydrodynamical formulation of
quantum mechanics: the quantum-hydrodynamical meth-
od.!! This method provides a physically intuitive and math-
ematically transparent connection between the quantum
problem and its associated classical counterpart.

We have exploited further the quantum-hydrodynami-
cal method in the search of invariants associated to the quan-
tum dissipative time-dependent harmonic oscillator de-
scribed by two different models’: (1) an explicitly
time-dependent linear Schrédinger-Langevin equation (the
Caldirola—Kanai model), and (2) a logarithmic nonlinear
Schrodinger-Langevin equation (the Kostin model). For
the former model, we obtained an exact associated time-de-
pendent invariant. For the latter model, we showed instead
that neither an exact nor an approximate time-dependent
invariant can be constructed.'®

At this point one can ask a most pertinent question,
tacitly suggested at the conclusion of our previous work."
Does any other nonlinear Schrodinger-Langevin eguation
admit an associated time-dependent invariant ? In this paper
we answer this question affirmatively.

Via the quantum-hydrodynamical method, we show
that it makes it possible to find an exact or approximate
configurational invariant associated to the quantum dissipa-
tive time-dependent harmonic oscillator (TDHO) de-
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scribed by certain classes of nonlinear Schrodinger-Lange-
vin equations (NLSLE’s), which do not admit usual
quantization prescription. These equations will be presented
and studied later (see Secs. II and I1I). In doing so, we dem-
onstrate the essential feature of our method'®: that is, one
can deal with quantum dissipative time-dependent systems,
irrespective of whether or not these systems can be defined by
an underlying Lagrangian/Hamiltonian formalism. Appar-
ently, this is an ingredient which makes our method appeal-
ing vis a vis the other aforementioned methods, since the
problem under consideration is outside their realm of opera-
tionality.

In passing, we point out an interesting protocol devel-
oped by Remaud and Hernandez'® in the construction of an
exact invariant for the dissipative classical time-dependent
harmonic oscillator. There, by generalizing a prescription
originally given by Symon'’ and without any particular
Hamiltonian formalism, they proceed further on quantizing
their classical invariant aiming a close connection with a
quantum description of the associated dissipative process.
As these same authors point out, however, the quantization
of this invariant is not obvious as one is forced to take into
account sizable fluctuations. On the other hand, our work
takes the reverse direction. We start from different quantum
formulations of the dissipative time-dependent harmonic os-
cillator problem and then interconnect them with their clas-
sical counterpart description through two fluid-dynamical
equations: a continuity equation and an Euler-type equa-
tion."”> As we will see below, the latter equation is the main
bridge for the transition from the quantum to its classical
counterpart problem: it generates the proper pair of equa-
tions (the Ermakov system) which lead to the companion
invariant of motion.

In Sec. I1, we study the quantum dissipative time-depen-
dent harmonic oscillator described by a nonlinear Schro-
dinger-Langevin equation with frictional logarithmic non-
linear operator W, = — ifiv(In ¢ — (In¢)), that is, the
Schuch-Chung-Hartmann model.'® For this model we de-
rive an exact associated time-dependent invariant. In Sec.
I11, by proceeding along the lines of Sec. II, we study another
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class of a nonlinear Schrodinger-Langevin equation with
frictional nonlinear operator
W, =v{[x— (x)1[ep + (1 —c)(p)] — kific},

which includes the Siissmann (¢ = 1), Hasse (¢ =1), and
Albrecht-Kostin (¢ = 0) models.’*?? We show that the
same invariant, derived in Sec. II, is also exact for the Hasse
model, while being only approximate for the Siissmann and
Albrecht—Kostin models. In the last section, we study the
quantum-hydrodynamical energy dissipation theorem, for
each of the models under consideration, and comment about
the possible implications of the results found.

Il. NONLINEAR SCHRODINGER-LANGEVIN EQUATION
WITH FRICTIONAL NONLINEAR TERM

W, = —#v(In v—<In ¥)): AN EXACT ASSOCIATED
INVARIANT

We begin with the quantum formulation of the dissipa-
tive time-dependent harmonic oscillator described by the
Schuch—Chung-Hartmann model,'® namely,

Y
#% xp=-_2 2%
: ot (x.1) 2m 9x?

+ (—ﬁ;v-(ln Y(x,t) — (Ing(x,1)))

1

s me(t)xz)«p(x,t), 2.1

where ¥(x,t),v, and w(?) are the wave function, constant
friction coefficient, and time-dependent harmonic oscillator
frequency, respectively. The reader is referred to the works
of Schuch, Chung, and Hartmann'® for a detailed discussion
of the compelling physical reasons that motivated the study
of this interesting equation.

To obtain the quantum-hydrodynamical description of
Eq. (2.1), we write the wave function in the form'’

P(x,t) = d(x,t)expliS(x,2)]. (2.2)

After substitution of Eq. (2.2) into Eq. (2.1), we obtain
from its real and imaginary parts

av dv 2 1 aV‘I“

—_— — t _— 2‘3

5 Hogr T wiox —— (2.3)
and

P L 9 ()= —vp(np — (Inp)), (2.4)

a  ox

where p=¢?, v=(fi/m)(3S/dx), and V, = — (#/
2m)p~'2(3%p"/?/3x*) are the quantum fluid density, the
quantum fluid velocity, and the quantum potential, respec-
tively. Equation (2.3) is an Euler-type equation describing
trajectories of a fluid particle, with momentum p = mv, ina
quantum dissipative medium, whereas Eq. (2.4) will be
shown below to take the form of a Fokker-Planck-type
equation. The above set of Egs. (2.3) and (2.4) constitutes
our fundamental stepping stone in the search for the invar-
iant of motion associated to the nonlinear Schrodinger—Lan-
gevin Eq. (2.1).

. Likewise in an earlier work,'® we assume that the expec-
tation value of the quantum force vanishes for all times, i.e.,
(F,, )= — (dV,/dx) =0, suggesting that (an ansatz)F,,
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o (x — (x)). We denote (4 )=fpA dz as the expectation
(average) value of 4 taken over an ensemble of identical
fluid-particles. In doing so, we may split (2.3) into

d )

— —— 2 = —
é’t+v . +w + w()x = k() {x —q()},

and

2 .1/2
aix [.2%,,4/2 iéfz_] =k(O){x—q()}, (2.6)

where ¢ (t) is the expectation value of x[ (x) = ¢(#) ], which
will be determined in concomitance with k().

We prepare the fluid-particle initially in a Gaus-
sian wave packet centered at x=0, py(x)=p(x,0)
= [wo (0)] /2 exp[ — x*/o (0) ], with an initial velocity
Uo(x) =v(x,0), and integrate (2.6) (assuming that p van-
ishes for |x| — oo at any time) to obtain

p (x,t) = [mo (1)1 exp{ — [x — q(8)]1%/o (D)},
(2.7a)

2.5)

where
o *(t) =#/m?k(1). (2.7b)
Next, with the help of (2.7a), Eq. (2.4) can be rewritten

as

d 3 d%

Pt N T —D =0, 2.8

a Ta P TP 28
with D=vo/4. Equation (2.8) has the form of a Fokker—
Plank-type equation.

After integrating (2.8), we find

o(x,t) = 0/20[x — q()] +4(2), (2.9a)
with

uEv—Dléﬂ=v+l[x—q(t)]. (2.9b)

p 0x 2

The constant of integration in Eq. (2.9a) must be zero since
p vanishes for |x| - co.

By inserting Eq. (2.9) into (2.5), one easily obtains

g & ( 2 vz) # )
— ———+|*() ——] — x—
( 20 47 @ 4/ mio? *-9
+ @+ vq + o*(1)g) =0. (2.10)

This equation is actually the final form of the Euler-type

equation (2.3), and, as we show right below, represents the

main bridge from the quantum to the classical counterpart
problem. It is identically satisfied if

a+ [w* (1) —v¥/4la = 1/a?,
and

g+ vg+w()g=0, (2.12a)
where we have made o = (#/m)a*. By the change of vari-
able g = ue ~*'"%, we recast Eq. (2.12a) as

it + (w?(t) —v*/4u =0. (2.12b)

By eliminating w?(¢) — v*/4 between Egs. (2.11) and
(2.12b), and, after some simple manipulations, we end up
with

I1=0,
where

(2.11)

(2.13a)
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I=}[(sa —au)® + (u/a)?*] (2.13b)

or
I=}e"[(ga — ag + (v/2)qa)’ + (¢/@)?), (2.13c)

whichis theexact time-dependent invariant associated to the
Schuch-Chung-Hartmann model.
Another interesting way of arriving at (2.13) is to write

q(t) =e ""a(t)r(r), (2.14)
where 7 is related to ¢ through [dr = u(#)dt]:
(1) =J' ulA)dA. (2.15)

Substitution of (2.14) into (2.12a) yields
(ap®)r” + Qua + pa)r + (& + W (1) — v*/4a)r=0.

(2.16)
This equation can be reduced to
r"+r=0, (2.17)
by making
2e/a +p/u =0=>u = 1/a® (2.18a,b)
and
a + [w?(r) —v¥/4)a = 1/a>. 211

By multiplying Eq. (2.17) by 7’ and integrating we ob-
tain

I=3[(")*+ 7). (2.19)

Equation (2.13c) can be recovered from the above in-
variant by replacing back » = ¢"'/*(¢/a) and dr = dt /a’.
Thus, we conclude that Egs. (2.11) and (2.12a,b) constitute
an Ermakov system, since they generate an Ermakov-Lewis-

type of invariant.'®

HL FRICTION OPERATOR
=v{lx—ONep+(1—-cX p)>—} ific): ANEXACT AND
APPROXIMATE ASSOCIATED INVARIANT
Next, we conside the quantum dissipative time-depen-
dent harmonic oscillator described by the following class of
nonlinear Schrédinger—Langevin equation:

i %% (x,1)

2
_E ‘2 'f' (x,8)
+ (v{[x — (X)) + (1 =) (p)] — Jific}
+ imw (Dx*)Y(x,1), (3.1
where the frictional nonlinear operator term

{[x ~ (x)][cp+ (1 —c){p)] — lific} includes those pro-
posed by Stissmann (¢ = 1), Hasse (¢ = ), and Albrecht-
Kostin (¢ = 0), as the special cases.'>?*

A comprehensive analysis and critique of the compel-
ling physical reasons related to the formal mathematical at-
tractiveness, which motivate the study of this class of nonlin-
ear Schrédinger—Langevin equations, can be found in the
works of Stocker and Albrecht,'® Albrecht,?® Hasse,! and
Kostin.?

To obtain the quantum-hydrodynamical description of
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Eq. (3.1), we proceed along the lines of Sec, II [¢=¢
X exp(iS) ], resulting in

dv P 2
> +”_a + v(e) + @* () (x)
1 3 1
__14 10t (x — ) ,
—— (V,,,,+2m () (x—(x)) (3.2)
and
P L9 (r)= 3.3
at + ax (p ) (-3

where Q%(1) =0?(t) — V¢, p=¢°, o=v+ ve(x — (x))
[v=(#i/m)(3S/3x)], and V,=—(#/2m)p~!"?
X (8%p''*/3x?) are the shifted frequency, the quantum fluid
density, the generalized quantum fluid velocity (quantum
fluid velocity), and the quantum potential, respectively.

By following closely the protocol developed in Sec. 11,
we convert the Euler-type equation (3.2) into the form

(—2—1——2-02—+(a)2(t) — V) ~ f;) (x—q)
+ (@ +v4 + o*()g) =0 (3.4)
This equation is identically satisfied if
a+ [0?*(t) — WV la = 1/d°, (3.5)
and
G+ vg + o’(t)g =0, (3.6)

with o = (#i/m)a’.

Notice that by simply setting ¢ = } in Eq. (3.5), we re-
cover Eq. (2.11). Thus, the results obtained in Sec. II hold
also true for the Hasse model. In fact, the Schuch—Chung-
Hartmann and Hasse models are alike under the protocol
developed above, since the solution set to their correspond-
ing quantum problem, i.e., p(x,t) and v(x,?) [or »(x,t)], are
the same. To the best of our knowledge, this has not been
realized in previous works.'®

In general, for any values of ¢ and v in Egs. (3.5) and
(3.6)—including the Siissmann (¢ = 1) and Albrecht-Kos-
tin (¢ = 0) models—no exact time-dependent invariant can
be found. It turns out, however, that if v* (and c**) is very
small compared to, say, w’(¢), then equations (3.5) and
(3.6) can be approximated to

a+ o*(a =1/, 3.7
and

it + 0*()u =0, (3.8)
with u = ¢"'/%q.

Hence, the invariant constructed from Egs. (3.7) and
(3.8) is the same as that obtained in Sec. II [Eq. (2.13)]. It
should be stressed,however, that this invariant is only ap-
proximate for the Siissmann (¢ = 1) and Albrecht-Kostin
(¢ = 0) models—that is, if v* €0 (7).

IV. FINAL REMARKS AND CONCLUSION

It is worthwhile noticing that, if o(¢) =@, (a con-
stant), Eq. (2.13a) for the associated classical invariant re-
duces to the well-known equation for the classical energy
disspation theorem
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2 (L@ +ain)= v (41)
So, one further important, suggestive point remains to
be investigated, in light of the second law of thermodynam-
ics. We must verify whether the nonlinear Schrédinger—Lan-
gevin equations studied in Secs. II and III also fulfill the
quantum-hydrodynamical-energy-dissipation theorem. '
(1) For the Schuch—-Chung-Hartman model, we can

construct the following relation:

au  JdlIl , v U d
= —_———— -1, 4.2a)
= % prt—— > O [p(x—ag)] (
or
au 4 [ v ]
22 0% In+2uix —
o T o [TV
= —vpvz—lp(x—q)i(g), (4.2b)
2 dx \p
where
U=4pv*+p(V,, + V)/m, (4.3)
is the quantum-fluid energy density, and
2 V,.+V # a%
om0 [ 5)
pv( 2 + m + 2m? [\" dx ¢
_9¢ 3¢ (4.4)
at Ox

is the quantum-fluid energy flow density.
By averaging Eq. (4.2b), one obtains

£- -3 62 () 0 2]

(4.5)

where E=({9U/dt)), (:)=f-pdx, and ((-))=f-dx.
Whether this expression a/ways fulfills the correctly expect-
ed inequality £<O (for @ = w,) is not obvious whatsoever.
We leave this point, however, for a detailed examination in a
future work.

(2) For the other class of nonlinear Schrédinger-Lan-
gevin equations, we may also construct its corresponding
relation for the quantum-mechanical energy dissipation
theorum, namely

ar 4

= T vpel () —vel(x — (x))],  (4.6)
where now
7 =4pl +p(Vy + V)/m, (4.7)
is the quantum-fluid energy density, and
(P Vut # [( d? ) dp dp
ﬂ"””(z P ) o \arar) T e ax
(4.8)

is the quantum-fluid energy flow density.
By averaging Eq. (4.6) and using (2.7a), one gets

& = —v(v)? + V22 ((x — (x)v)
+ v {((x — (x))?), (4.9)
where & = ((3%°/3t )). So, in order to guarantee that #<0
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(for » = w,), we should have ¢ == 0. Thus, this seems to be
the most plausible choice for the parameter ¢ (see Ref. 20).

Another interesting remark worthy of notice. If we
make the change of variable @ = fe*’/?in Eq. (2.11), we get

¢+ vE + ()= /E3, (4.10)

which, together with Eq. (2.12a), forms the pair of equa-
tions derived in our earlier work for the quantized Caldir-
ola—Kanai model (an explicitly time-dependent, linear
Schrédinger-Langevin equation).

At last, a purely speculative point, if not a further ques-
tion, for a future and more elaborated investigation: the exis-
tence of an invariant indicates, perhaps, that the nonlinear
Schrodinger-Langevin equations studied above (through
the quantum-hydrodynamical method) may allow some
sort of linearization on the Schwartz space S and may be
transformed, thereby, to a Hamiltonian formalism. In pass-
ing, Taflin®® has recently studied the Burgers equation (a
dissipative, nonlinear hydrodynamical equation which has
no solitons). He has linearized it on the Schwartz space,
defined it by a Hamiltonian formalism, and proved that it
has an infinity of time-independent invariants in involution.
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The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint
systems. A procedure to construct the Lagrangian constraints from the Hamiltonian
constraints is given. Those Hamiltonian constraints that are first class with respect to the
Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.

I. INTRODUCTION

The current interest in constrained systems was
spawned by Dirac' and Bergmann? in their study of the ca-
nonical formalism of gravitational fields. Since that time sev-
eral people contributed to the building of a mechanics for
such systems.> In particular the Lagrangian,® Hamilto-
nian,** Hamilton-Jacobi,® and geometrical formalisms’
have been studied. For a time this field of research had little
more than mathematical interest, but now with the increas-
ing interest in gauge theories (any theory with gauge trans-
formations is a theory of constrained systems), more people
are beginning to use this formalism at the classical and quan-
tum level.

On the other hand, constrained systems with a finite
number of degrees of freedom have been used to construct an
N-body relativistic mechanics of direct interactions® whose
corresponding quantum mechanics,” which is multitem-
poral, is related to the Bethe-Salpeter equation.

Despite increasing interest, the mechanics of these sys-
tems is not as elaborate as the corresponding mechanics for
unconstrained systems. For example, the equivalence
between the Lagrangian and Hamiltonian formalism has not
been definitely established.'®1?

In this paper we give an explicit and complete proof of
this equivalence. We construct an implicit inverse relation
between velocities and momenta, i.e., the inverse Legendre
transformation. Using that we deduce the Hamilton—Dirac
equations from Euler-Lagrange equations. Neither is a set of
normal differential equations, therefore the uniqueness and
existence theorem cannot be applied. This means that, at
most, we will only have solutions in a submanifold of the
respective spaces and in general these solutions will not be
unique.

A careful analysis shows that given a solution of the
Euler-Lagrange equations we can construct a solution of the
Hamilton-Dirac equations and vice versa. Next we look for
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the appropriate submanifold of the tangent bundle (7Q)
and a submanifold of the cotangent bundle ( 7" *Q) where the
solutions exist. These submanifolds are constructed through
an iterative procedure. In a given local chart they are charac-
terized by a set of functions that are called constraints.

The Hamiltonian formalism as developed in this paper
differs from the usual development.'- The first class primary
constraints play a privileged role. Other constraints are ei-
ther first or second class with respect to them. These con-
straints that are first class with respect to the primary first
class constraints can be associated with Lagrangian con-
straints that are FL-projectable (or weakly FL-projectable).
Those that are second class in the Hamiltonian formalism
have associated non-FL-projectable Lagrangian constraints.
It is also shown that all constraints other that the primary
constraints have either a symmetric or antisymmetric Pois-
son bracket (PB) structure with the first class primary con-
straints.

The paper is organized as follows. In Sec. II we show
that if we have a solution of the Euler-Lagrange equations
we can construct from it a solution of the Hamilton-Dirac
equations and vice versa. In Sec. III we develop an algorithm
for the determination of the Hamiltonian constraints. In Sec.
IV we develop an analogous algorithm for the Lagrangian
constraints and we relate the Lagrangian and Hamiltonian
constraints.

Il. THE EQUIVALENCE THEOREMS

We consider an N-dimensional configuration space Q
and a function L, the Lagrangian, defined in its tangent bun-
dle 7Q. The Euler-Lagrange equations

2.1)

can be written in the normal form of ordinary second-order
differential equations (SODE) only when the Hessian ma-
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trix W, =3°L /3¢' 3¢’ is regular.

If the Hessian matrix is singular, neither the existence
nor uniqueness theorems for SODE holds. This means that
the possible solutions of (2.2) lie in a submanifold of 7Q and
given a point of that submanifold we can have more than one
solution passing through that point. We shall assume in the
following that the rank of the Hessian matrix W is constant
in all TQ and is n — m,. If this is not the case, our consider-
ations will only hold in an open region of TQ where this
condition is satisfied.

A.The map FL

The fiber derivative of the Lagrangian is the application
(FL) of the tangent bundle on the cotangent bundle 7*Q

FL: 7Q0-T*Q,
given by FL(g,¢) = (g,p), where

i=1,.,n (2.2)

We shall also assume that FL(7Q) =M,CT*Q is a sub-
manifold of 7 *Q, locally defined by the constraints

O (gp) =0, p=12,.m, (2.3)
which are the primary constraints.
We also assume
)
rankl £ | =m,. 2.4)
ap;

This condition excludes ineffective constraints at this level.
In the following we will disregard Lagrangians that have
ineffective constraints at any level.

The primary Hamiltonian constraints (2.3) are identi-
fied at the Lagrangian level, i.e.,

O (9,2 (¢,9))=0, (2.52)
or equivalently
FL*®(® =0, (2.5b)

where FL* is the pullback application. From (2.5) we de-
duce
JD©® 92,
—9.7 @)} =—=0,
. 94

and since dZ,/d4’ is the Hessian matrix element W, we
have a basis for the null vectors of W:

(2.6)

) o
v, =FL* —£
ap’
A basis for the kernel of differential application FL* can be
written in terms of (2.7):
i .. d
Fp = },‘;4 (q’q)a_q—‘

i=1,..,n. 2.7)

p=1..m,

(2.8)

A function feA°(TQ) is FL-projectable if there exists some
function geA®( T *Q) such that f = FL*g. The necessary and
sufficient condition for feA°(TQ) to be FL-projectable is
that”°

r.f=0, pu=1,.,m,. (2.9)

The energy function E, (¢¢) = ¢'?,;(qq) — L(qq) verifies
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condition (2.9). Therefore there exits a function
H,eA°(T*Q) such that

FL*H, = E,,

where H_ is only unambiguously defined in M|,

Let us proceed to the inversion of the Legendre transfor-
mation FL. Given a point (g,,4,)€TQ and its image under
FL(goP0), Po = (g0sdo), We have the identity

H.(967 (4640)) =46 Z:(40:d0) — L(4ord0)» (2.11)

from which, taking the derivative with respect to §;, we ob-
tain

BHC( )6.¢i( . )_69’,.
a, 40 Po a, 90do) = 3

J
Therefore, g, — (3H,/dp) (g, Po) is a null vector of W and
can be written in terms of (2.7):

(2.10)

(9040 d0- (2.12)

. OH, .
b =, dopo) = 7, G0k, (2.13)

for some parameters v°. Note that (gog,) is a particular
point of anti-image FL~!(gq,2,). The whole anti-image is a

leaf of foliation, defined in 7Q by the equivalence relation
x~x'eFLx = FLx!; xx'eTQ. (2.14)
Consequently, Ker FL at every point xeTQ s given by
the elements of T, (7Q) tangent to the leaves of the foliation
previously defined. In other words, these leaves are the inte-
gral surfaces of the vector fields belonging to Ker FL, . This
means that FL~'(g, p,) will be generated from the point
(gordo) by the exponential map e“™* with u, arbitrary pa-
rameters and I',, the vector fields (2.8). Therefore,

FL~'(go o) = (gsd (¥)), (2.15)
where
. a ©
¢'(v) =—(goPo) + v, —=—(qo Po)> (2.16)

dp; Ip;

with the arbitrary parameters v, given by v, =] + u,.
Due to the condition (2.4) given a point of this leaf we can
determine the parameters v* in terms of the coordinates of
this point. This means that for a given point (g,p)eM, and all
its possible anti-images we have the relation

ch aq,(O)

: #
. (g.p) +v,(qq) P,

g, = (g.,p). (2.17)

If we now consider Eq. (2.17) as a system with (g,p) as
data and ¢ as unknowns, we show in Appendix A that there
are no solutions if the data are out of M,; whereas if the
(gp)eM,, the solutions of (2.17) are obviously given by
(2.16). Therefore we conclude that the relations (2.17) and
(2.2) are equivalent. Therefore Eq. (2.17) is the inverse Le-
gendre transformation; note that Eq. (2.17) is an implicit
equation for §.

Let us observe that the application of I" to both sides of
(2.17) gives

C,v,=4,,. (2.18)

This means that all the functions v, (¢¢) are not FL-project-
able. However, we shall see in Sec. III that some of these
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functions admit a canonical form when restricted to a suit-
able submanifold of 7Q.

Now if we take the derivative of (2.11) with respect to
q;» we have

- —(qq)

A —(gp) (@ oH. (qp))a—?i(q a)
aq‘ q’ j k) s

ap; dq
(2.19)

FL(qq) If we use Eq. (2.17) we have
(©
— v, (g)—— (qp)——(qq),

q’ p;
(2.20)

where (gp) =

— :??(qq)

but since FL*®, = 0 we have
FL*(”“ )a_% + FL'(a(p‘_‘) =0.
dp; ] 3¢’ aq'
Therefore, Eq. (2.20) can be written as

(0)
£ (g,p).
aq'

(2.21)

JdH
- —(qq) = T(q,p) +v,(99)—— (2.22)

Let us now consider the equations of motion.

B. Equations of motion

A curve g: IeR - Q is a solution of the Euler—Lagrange
equations (2.1) if the function p(¢) defined by

p(1) = ﬂ(qm, “q“’) (2.23)
dr
satisfies
P _ ( ) 2.24
dt dq @, ( )

Due to the equivalence between Egs. (2.2) and (2.17) we
can write an expression equivalent to (2.23), i.e.,

H (0)
d" = a0 +u, (q(t), d"‘t”)——(q(z),p(t)),

dp
(2.25)
also due to (2.22) we have

——(qm,q(t)) —(q(r),p<r>)+v (q(r), "{jt”)

(0)

X—(q(t),p(t)) (2.26)

and using (2.24), Eq. (2. 26) is written as

OH,
-2 ——(q(t),p(t))

(0)

(q(t), dq(t))——(q(t),p(t)) (2.27)

Equations (2.25) and (2.27) are the Hamilton-Dirac equa-
tions for the singular Lagrangian L (¢¢), so we can formulate
the following theorem.

Theorem: If ¢(#) is a solution of Euler-Lagrange equa-
tions (2.1) in configuration space, the lifting to T *Q given by
(g(2),p(2)) with p(z) defined by (2.2), is a solution of the
Hamilton-Dirac equations (2.25) and (2.27).

Furthermore, in the inverse sense, if (g(2),p(t)} verify
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Eq. (2.25) and Eq. (2.27), then (2.23) is satisfied because
Eq. (2.23) is equivalent to (2.25). Furthermore, from
(2.26) and (2.27) we obtain (2.24), therefore the following
theorem holds.

Theorem 2: If (g(¢),p(2)) is a solution of the Hamilton—
Dirac equations (2.25) and (2.27), then g(¢) verifies the
Euler-Lagrange equations (2.1).

If we consider the canonical symplectic structure of
T"‘Q we can write Egs. (2.25) and (2.27) in terms of PB as

99 _ {gH}+v (q, ){q, o},

d
=} +3,(0. 92 9V, 00,

These equations are not written in the normal form, in
the same sense as the Euler-Lagrange equations of motion,
(2.1), therefore the possible solutions of those equations lie
in a submanifold of T *Q and the solution passing through a
point of that submanifold is not necessarily unique.

Equations (2.28) and (2.39) can be written in a normal
form if one introduces m, arbitrary functions of the evolu-
tion parameter A, (), and also imposes from the outset the
primary constraints

(2.28)

(2.29)

—ﬁ vl {g.H.} + 4, (") {g, 2}, (2.30)
= {p.H.} + 1, (0 {p, 20}, (2.31)

dt M,

where = means weak equality on the surface M,,. Equations

M,
(2.31) are the standard Hamilton-Dirac equations.'**>

1ll. HAMILTONIAN FORMALISM

In the preceding section we assumed the existence of
solutions of the equations of motion and we have shown the
equivalence between the Lagrangian and Hamiltonian for-
malism. Now we study the submanifold where those solu-
tions exist, we will use an iterative procedure. Let us begin
with the Hamiltonian formalism, the Hamilton-Dirac equa-
tions of motion are Eqgs. (2.28) and (2.29):

%~{q,H Y+ (q, ){q, o7},

(3.1
ap _ ( __) ©
‘ dt {p’Hc}+v,u q’ dt {P, ¢y, },

where @ are the primary Hamiltonian constraints and
v, (¢,9) are known function of ¢ and . We know, from Ap-
pendix A, that (3.1) have only solutions if the initial condi-
tions belong to the submanifold M,C T"*Q. In that case, a
curve passing through a point of M, will be a solution of
(3.1)if

d o
=0, p=1,.,m,
dt M, # ™
that is, the solution (g(#) ,p(¢)) must belong entirely to M,,. In
general, Egs. (3.2) will be restrictions for the initial condi-
tions. We write (3.2) as

(3.2a)

0={®".H.} +v, @ {E o). (3.2b)
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To discuss the content of (3.2) it is necessary to know the
rank of the PB matrix between the primary constraints, i.e.,

(3.3)

which we assume to be constant on M, It is convenient to
introduce an equivalent set of constraints

rank {®”, ®Y =my —m,y, pv=1,.,m,

DD, piy =1,y (3.4)
<I>"‘g’, 2o = 1,...m; — my, (3.5)

with the properties
0 1?:, det]{dﬁ?, Qf,é‘”}l =detCY, (3.6)
(3.7)

{22, 2} =0, {22, o} =0
therefore @, <I>;“g’ are first and second class, respectively,
on M, Note that &2’ are m, — m; of the old primary con-
straints &, instead @’ are linear combinations of them. If
we consider Eq. (3.2) for the second-class constraints <I>;2’,
we obtain a canonical expression for the functions v, (9,4):

— (€M {® H1}

Vouo - Mo

v, (99) = (3.8)
0 M,

Therefore the evolution for a generic quantity 4(q,p) in M,
is given by

% = (4, HOY 40, @A OV, o= Ly
(3.9)
where
W=g _ ©) My ~1 (O
H=H —{H & HCM) . oL,
Hor Vo = Lyumy — my, (3.10)
with the properties'®
{®9, HV}=0. (3.11)
a5 M,

The evolution of the first class constraints ®£> is given by
d

LoD = {00, HOY=0, (3.12)
the stability conditions for @}’ are
(DL(‘”:O. (3.13)

If all these conditions are satisfied on M, the analysis is fin-
ished, if this is not the case Eqs. (3.13) are new restrictions
on the initial conditions, which we call secondary con-
straints. Note that some of thiese constraints can be automat-
ically satisfied on M, but in order to use a more compact
notation we will continue to use the subsctipt x, for all sec-
ondary constraints.
Let M,, be the new submanifold defined by

<1>L‘g’ =0, p,)=1,.m —my,,
D=0, =0, po=1..m,
A curve passing through a point of M, will be a solution of
GB.nif
4% _
dt M,
These stability conditions can be written explicitly

(3.14)

(3.15a)
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0= {00, HPY 40,4, (0D, 00} (3.15)

InEq. (3.15) a PB matrix appears between the primary first-
class constraints on M, and the secondary constraints. As is
shown in Appendix B this matrix is symmetric:

{20, 0} = {200, ®0}. (3.16)

Let m, — m; be the rank of this matrix. Due to this symme-
try property we can introduce a new set of constraints

q)’(‘?) = 0, (b;(tt) = 0, ».“1 = l,‘"’ms,

, (3.17)
<I>I“?’ =0, (D:‘;’ =0, p}=1,.,m—ms
with the following properties:
0# det|{®V, P} =det C?, (3.18)
M, H1 Vi M
{o, (0} ; 0, (3.19)
{0, d>;?’} ;. 0. (3.20)

Note that @ are m, — m; of the old ®.2, due to the sym-
metry property, Eq. (3.16), and Q;;’ are also the same
m, — m;of the ®{). The ®{*’ are a linear combination of the
®2 and the @’ are the same linear combination of the
&1, This means that we also have

@) = {2, H "},

O _ {H© g
q’m - {d)"; VH Y,
This means that the labeling of new constraints is compatible
with their stability, therefore we have a sort of hereditary
property. It should be noted that ®° are first-class con-

straints on M,.
At this point, we consider the stability condition for the

constraints <D£;”. From this we obtain a canonical expression
for the functions v, ( q99):

(3.21)

v,(g9) = —(CH) L A, HP ). (3.22)
The evolution on M, is given by

A _ 4, HOY 4o, (g4, 0O}, (3.23)

dt M,
where

2) _ (1) 1) (1) 2y —1 ()}

HP=H® +{H", oPHCH) 7, o, (3.24)

with the properties
(3.25)

{(o®, H®) = 0.
Hy M,

Now consider the stability of the remaining secondary
constraints

45 = o, HP)=og,
the relations ®(» = 0 can be satisfied on M, in which case

the analysis is finished. Otherwise

O =0, pu;=1,..ms

(3.26)

(3.27)
are tertiary constraints. At this level the evolution is restrict-
ed to the submanifold M,:
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q)(o) =0 P@ =0 OO =0
B ? s ’ s ? (3.28)
o =0, &0 =0, &P =0,

with
po = lemy—my pi=1..my—ms py=1,..m;
(3.29)

In order to study the stability of tertiary constraints

., we need to consider the PB matrix of the primary first-

class constraints on M, ®, with the tertiary constraints

®». As is shown in Appendix B, this matrix is antisymme-

tric in the submanifold M,:

{62, 0} = — {0, &} (3.30)

Let my — m, be the rank of that matrix. Due to the antisym-
metry property we can introduce a set of constraints

2 2 =
S0, d2, py=1...my

>©, @ (3.31)

[(12)’ #5 = 1,...,m3 —_ m4,
which define the same surface as the set (%, ®{?’, with the

properties

3) — 2) O
det C 2, =det{®2 0P} 0, (3.32)
@2 e} =0, (o2, &) =0, (3.33)
oY = {00, HYY, D ={0@,HO),  (334)
*P ={eP H®}, oP ={0P,HP}.  (335)

The stability conditions for the tertiary constraints dﬁ’, as

in the previous case, enables us to obtain a canonical expres-
sion for the functions v, Using that expression the evolu-

tion on M, is given by

M 4 HDY 40,14, 00), (3.36)
dt M, :
where
S 4¢) (2) @@ By —1 PO
HP=HP-{H®, o2} (C® ., &2, (337
with the property
{03, H®} =o0. (3.38)
H2 M,

With respect to the stability of &>’ we have the relations

q;f:) =0, (3.39)
where
<I>,‘:’E{<I>ﬁ’, H®}, (3.40)

If the relations (3.39) are verified on M, the analysis is
finished. Otherwise we have more constraints and therefore
we need further to require the stability of those constraints
and the procedure continues as before. Let assume that our
Lagrangian has a final submanifold M, where we have solu-
tion of the equations of motion (3.1). We write the con-
straints defining M, as
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q)(o)

© © (0) @O . .
¢M6 q)#{ 71 q)u; ¢#f »  primary;
Q:“i’ QL;) <DL}) @), secondary;
. (341
<I>:‘i’ Q;;’ 2, tertiary;
oD DL, fary,

where the hereditary property is manifest. The equations of
motion on M, are

dA

dr

4, HI* P} + v, (99){42}, (3.42)

where
HU+D =H‘('f) + (- )(f+ l){H(n q>(n}(c(f))—l P
" w %
(3.43)

The matrix CY is symmetric or antisymmetric depending
on whether fis odd or even.

We have
{q)‘(‘{)) H£f+ l)} = 09 (3.44)
‘2 M,
and since the analysis is finished we have
{d%’,Hﬁ’*”}:O. (3.45)
M,

S

Note that in the equations of motion there appear functions
v,,(g4) that are not determined canonically and are asso-
ciated with the primary first class constraints on the sub-
manifold M.

Let us now study the relation between the procedure of
Dirac brackets (DB) for second class constraints,’ and the
procedure developed here. Let us begin with the case with no
tertiary constraints. The DB with respect to second-class
constraints <I>"“;’ <l>,“‘i” <I>,‘“;’ can be constructed in two steps.

First we construct the DB for the constraints <I>,“g’, i.e.,

{4,8Y"={4,8} — {49} (D) . {®D,B},  (3.46)

where (A") ~! is the inverse matrix of D" defined by

DY = {92, &), (3.47)

which coincides with C,(.(l;)v;, [Eq. (3.6)]. The final DB is
written as

{48V ={4,BY" — {4y, "D D, {y, BY*,  (3.48)

where y , indicates any one of the constraints ®©, V),
M1 # Ld]

and (D@)~1 s the inverse of the matrix D® defined by
@ _ H, e
DR, = {XM ,xv;} . Explicitly

D(z) =( 0 _C(Z))’

=(co & (3.49)

where C? is the matrix defined in(3.18) and X is a matrix
constructed with the <1>“l‘;’ constraints.

Let us consider (3.47).in the case B = H,. Using Egs.
(3.48), (3.12), and (3.24) we have
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{4.H.}* = {4,H.}"

_ OV H, (2 —1 LD
{Aq)#{} (c )MVE{(I)Vi ’

Therefore our procedure on the M, surface is equivalent to
the Dirac procedure. In Appendix C we explicitly prove this
result for the case of no quartiary constraints. In order to
give a proof in the general case, we need to consider a more
geometrical formulation that takes into account the new
structures we have found. Work in that direction is in prog-
ress..

Summing up, Eqs. (3.42) are equivalent on M, to the
equations of motion generated by the total Dirac Hamilto-
nian:

H, HH(f+1)+v @

2 (3.51)
where HHY+ 1 js the starred Hamiltonian'? with respect to
all second-class constraints. Therefore the DB is not the
minimal structure to obtain the Hamiltonian equations of

motion.

IV. LAGRANGIAN FORMALISM: RELATION BETWEEN
THE LAGRANGIAN AND HAMILTONIAN CONSTRAINTS

In the previous section we have built a new scheme for
the constryction and classification of the submanifold of the
Hamiltonian constraints. Now, we shall use these results to
do the same with the Lagrangian constraints.

Using the Hessian matrix W, we can write the Lagran-
gian equations of motion (2.1) as

W, =a, (4.1)
where
L . ; d3L
=2 _ . (4.2)
EY R TE Y

If the rank of Wis n — m,, m, > 0, the Hessian will have m,
null vectors ¥, (¢,¢) such that

Wi =0.
The contraction of Eq. (4.1) with a null vector gives

X =aiy, =0.
This is the first generation of Lagrangian constraints:

(4.3)
(4.4)

¥ =0, p=1..,m,. | (4.5)
The submanifold in TQ locally defined by the vanishing of
the y." is denoted by §,. These Lagrangian constraints can
also be obtained with the help of the operator X:

d  dL d
K=¢FL* — 4+ — FL* —
et Y
which takes a function in A°(7°*Q), differentiates it with
respect to time, and gives the result in A°(7Q). As we dem-
onstrate in Appendix C, one has

KO® =y, (4.7)

From this equation, we can see that every primary constraint
produces a Lagrangian constraint of the first generation. Be-

(4.6)
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- {Aq);?)}Hc[(C(Z))K(C(Z))-l]”{ "

H, (DVH, )y —1 )
HY 1+ {400}Y(C ) - L {0,

{q)(?)Hc }Hl

H = {4, H?}. (3.50)

—
cause of the linearity of the relations (4.4) and (2.7), the

classification (3.5) enables us to make the splitting
XY, po=1,..
XLZ’, o = lyumy —m,.
Now we can demonstrate the following relations:
FLH®D,H,} + 1, (g0 FL{OD, 00} = 0,
(4.92)
FL*®() = y{  (mod X“‘:,)’). (4.9b)

First, we demonstrate (4.9a), using (2.17), (2.20),
(D4), and (D5). We have

(© — ; (0) g(®

FL*{QI“I) ’HC} _’1//46 - vVo (q’q)FL*{¢“6 !q>v0 }
—-v, (q,é)FL“{CD(O) (P(O)} (4.10)
but FL"{<I>‘°’ <I>‘°’} 0, due to the fact {d>‘°’ <I>‘°’} 0, so

(4.9a) is demonstrated Now we can demonstrate (4 9b).

(4.8a)
(4.8b)

9m2)

Wehave & = {®,H ("} with H {V given by (3.12); us-
ing (2.17) and (2.20) we have
dH P . AP u”
* < Y . )
FL praiat el (9¢)FL* , (mod @),
(4.11a)
()
FL* ch.
¢
aL a¢(0)
= ———v, (¢.¢)FL* —2  (mod y'1),
pY 99 a4, (mod y,.")
(4.11b)

and therefore

FL*{¢(°’H§1)}
=X’ = U, (G)FLH®2,87}  (mod y,")
=@’ (mod x}(‘?)

as desired.

Furthermore from an analogous equation to (4.10) we have
that

FL*{®®,H,} =y, (4.12)
From Eq. (4.9a) we see that the constraints y . are not FL-
projectable, instead the constraints y .’ are FL-projectable
[see Eq. (4.12)]. These results can also be seen using the

relation
[y’ =FL*{®{, 0"} (4.13)

[see Appendix C and Eq. (2.9) }. Therefore the Lagrangian
constraints X;(z? associated to the primary second-class con-
straints by means of the operator X are not FL-projectable.
Instead those associated the primary first-class constraints
are FL-projectable.

Now weé-want to investigate the stability of the con-
straints that locally define S,. We have
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;) [¢)] ;) [¢))]
d () _ & XI‘. +q1 xl‘ R (4.14)

¥ =gy a
‘We can obtain § from the equation of motion introducing the

completeness relation (see A5)

8 =M*Wy + 7,7 (4.15)
we have

g'{"s=lM"fa, +B.7h» (4.16)
where

By = Vurxs (4.17)

are the accelerations that are undetermined by the equations
of motion. Substitution of (4.16) in (4.14) gives

d

X =D + BT, (4.18)
where

D‘O)EajMﬁ:?%;"'éiqu' (4.19)

If we consider the stability, Eq.(4.14), of the non-FL-pro-
jectable constraints, y,’, we have

= D 0,1 ) )
0=DC%.; +B8,T X" (4.20)
with
L. =FL*(CD), .., (4.21)

due to (4.13) and (3.6). Since C* has an inverse one can
determine the undetermined accelerations Bv6 as a function

of gand ¢:

-_— 1y —1 0),,(1)
B p FL*[(C )V“(,’]D e (4.22)
Let us now consider the stability of the FL-projectable con-
straints. We have
d 1)

dr X

If the relations y 2’ = 0 are automatically verified in S, the
analysis is finished. Otherwise the >’ are the second gener-
ation of the Lagrangian constraints, which together with
x\" define the surface S,.

Now it is necessary to study the stability of y'2. It is
possible to show that

(4.23)

= DOy (D = ()
s_,D Xy =X -

KOY =y, (4.24)
S,

where X is the operator defined in (4.6). So the y > are
associated with the Hamiltonian constraints ®{.’. Remem-
bering the splitting(3.17), it follows that we have the follow-
ing splitting at Lagrangian level:

(1 2)

X:’ x|’ =1p°"’m:
’(Ln l(‘z) ,u: ’ (4.25)
Xui» Xug» 1= 1ycsmy — ms.
We see that labeling is compatible with the stability.
Now we can show

FLH®2H 1} + v, (@) FLMO,P. 00} = x.2,
(4.26a)
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FL*® =y (mod x). (4.26b)

The proof of (4.26) is more intricate than the first level and
is not given here. One can also show
FLt{q)’(‘:)’Hgl)} :X;(j)-
From Eq. (4.26a) we see that the constraints y (3’ are not
FL-projectable, instead the constraintsy'>’ are FL-project-
able on the surface S, [see Eq. (4.27) ]. We call these objects
weakly FL-projectable on §.
Furthermore, using the results of Appendix C we have

(4.27)

2) 1) 0)
L x5 =FLH{el.e0 }?o, (4.28)
instead of
L X2 = FLH®O2, 0} =0. (4.29)
S,

This analysis suggests that the necessary and sufficient con-
dition for a function f to be weakly FL-projectable on S, is

r,f =0, po=lLimy, (4.30)

where I, are the vector vectors fields of Ker FL tangent to
S;. This result is proved in a separate paper.

Now we need to require the stability of y<

d o _

_Xpo

dt (Do +BV6FV6 )le‘:) +B"o onx;(:)

s
=D L B T, y?. (4.31)
If we consider the stability condition for y (, we can express
the undetermined accelerations 8 ,; in terms of the coordi-
nates and velocities:

Bv; .;_: FL* [ (C(z));’—wli ]D (”X(Z)’ (4.32)

B

due to the nonsingular character of the matrix C?, Eq.
(3.18). Let us now consider the constraints yS>’, we have

d

ZX'(:) o Dy D =y>, (4.33)
If the relations y.>’, are automatically verified in S, the anal-
ysis is finished. Otherwise y<>’ are the third generation of the
Lagrangian constraints and the procedure continues. At
Hamiltonian level we have assumed the existence of a sub-
manifold M  where we can have solutions. This implies that
the relations

f f —
{q)‘(‘f),H( +l)};0

!

(4.34)

are identities on M ;. At the Lagrangian level we have

(N — 2 (f+ 1D
KCDW, s—fx“;“‘ , (4.35)
K2 =0, (4.36)
i4

and
* (¢)] N ; (Y BN} — LS+
FL {d>“} M }+vv}(q,q){d>”} <I>”; }s_, Xt
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FL*{<I>,(‘ff)H£f+ D} =0,

Sy

This means that we have no more weakly FL-projectable
constraints. However, we have the non-FL-projectable con-
straints y,/ " V. If we consider the stability of these con-
straints, we can obtain the undetermined ,3“, acceleration in

terms of the coordinate and momenta. At this point the anal-
ysis is finished.

Summing up, at every level a (weakly) FL-projectable
constraint on a certain submanifold comes from the stability
of a Hamiltonian constraint of the preceding level, which is
first class with respect to the primary Hamiltonian con-
straint, while a non-FL-projectable constraint comes from
the stability of a Hamiltonian constraint which converts a
primary constraint to the second class. Also, if a certain
number of velocities are canonically determined at a given
level, the same number of accelerations are determined at the
next level.

V. CONCLUSIONS

The equivalence between the Lagrangian and Hamilto-
nian formalism for constrained systems has been proved, in
the sense that given a solution g( + ) of Euler—Lagrange
equations of motion, the functions g¢(z) and
p(t) = P(q(t)[dg(t)/dt]) are solutions of the Hamilto-
nian-Dirac equations of motion and vice versa. Note that
neither of these equations is in normal form. This means that
we can only have solutions in a submanifold of the respective
space. These submanifolds are constructed through an inter-
active procedure. At the Hamiltonian level, our procedure
differs from the standard one. All constraints are classified
according to whether or not they are first class with respect
to the primary constraints. We have seen that PB matrix of
the primary first-class constraints on M, and the secondary,
tertiary, ... constraints are either symmetric or antisymme-
tric. This implies that our final Hamiltonian H {/+ ¥ differs
from the starred Hamiltonian of Komar and Bergman, but
on the final submanifold M , they both yield the same evolu-
tion.

At the Lagrangian level, we have seen that the Lagran-
gian constraints can be obtained from the stability of the
Hamiltonian constraints using the X operator (4.6). Fur-
thermore, the Lagrangian constraints that are FL-project-
able or weakly FL-projectable are the Lagrangian counter-
parts of the Hamiltonian constraints, which are first class or
second class with respect to the primary Hamiltonian con-
straints. In fact at every level, a (weakly) FL-projectable
constraint on a certain submanifold comes from the stability
of a Hamiltonian constraint of the preceding level, which is
first class with respect to the primary Hamiltonian con-
straint, while a non-FL-projectable constraint comes from
the stability of a Hamiltonian constraint that converts a pri-
mary constraint to the second class. Also, if a certain number
of velocities are canonically determined at a given level, the
same number of accelerations are determined at the next
level.
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APPENDIX A: COMMENTS ON THE INVERSE
LEGENDRE TRANSFORMATION

Here we demonstrate that Egs. (2.17),

dH, ( (6 )&<I>,§°’
ap, q.p) +v,(qq .
for ¢ in terms of ¢ and p, have solutions only if (g,p) belongs
to the submanifold M|, of the primary constraints. We know
that when (g,p) belongs to M, the solutions are given by
(2.16). Therefore, we have the identities
] oH 0)
¢'=FL* 5 =+, (gq)FL* 3 £

i i

(A1)

(g.p),

(A2)

Now at fixed ¢ we consider an infinitesimal displacement
P + dp from a point (¢q,p)eM,. We want to know if there
exists a solution of (A1), ¢ + dg, derived continuously from
the solution, ¢, with data (g,p)eM,,. If such a solution exists,
the following identities must be verified:

| 9H v, (¢4 OO
dif =pL* 2 gy 08D gy OV 4
dp; dp; g’ dp;

24(0)
+v,(¢,9)FL* —£
# dp; dp;
In order to study when these identities are verified, let us
consider the completeness relation

dp;. (A3)

55 =i+ MWy, (a0
where
. m,(9,9) . e
j = — 4 - FL* "—"u_ 'y
Vi aq’ Ve dp;
) d°H, %
M®* =FL* +v,(¢,4)FL* L, (A5)
ap; dp; dp; dp
_d
ki — N .
' 94, g,

Equation (A4) can be obtained by taking the derivative of
(A2) with respect to ¢ ;. Note that M * is not unambiguous-
ly defined in A°(7 *Q). This is due to the ambiguity of the
definition of H, out of the surface M,

The change

H_ (qp)—H(gp)=H(gp) +1,(gp)®>(q,p)

with 4, arbitrary describes the arbitrariness of the Hamilto-
nian. This change produces a new definition of the functions
v, of (2.17),

v, (9,9) =v,(q,9) — FL*4,, (A6)
and consequently a change in the matrices M ¥,
. . oA dA
M*=M* 4+ FL* —£ % + FL*—£ . (A7)
p; Ip

Equation (A3) can be written [using (A4) and (A5)] as
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M*(W,d¢’ —dFL*p,) =0, (A8)
where M * is any element of the family (A7). Since in that
family there always exists a nonsingular matrix, Eq. (A8) is
verified only if

W.dg’ = d FL*p,. (A9)

The necessary and sufficient condition for (A9) to be ful-
filled is that

7,d FL*p, =0, (A10)
where 1/,“ are the null vectors of W, Eq. (AS5). Therefore, we
have

FL*d®, =0, (A1)

and therefore we conclude that the only displacement
p—p + dpthat allow changes on the solutions §— ¢ + dg are
those made on the surface M,,.

APPENDIX B: STRUCTURE OF THE CONSTRAINTS
POISSON BRACKET

In Sec. III we stated that the matrix of PB between a
subset of primary first-class constraints on M, and the secon-
dary, tertiary, ... constraints was either symmetric or anti-
symmetric. Here we demonstrate this property explicitly.
Let us begin with the matrix of PB between the primary
constraints &< and the secondary constraints ®.". Taking
into account the definition of ®{’, the Jacobi identity, and
the first-class character of <I>,‘,°o’ on M, we have

(0,00} = ({20 H V)00 = ({90, H, }, 00
M,

= - ({20,001 H.) - ({H..2}L,00)

;’ {Qf,:))q);(‘g)} - {{‘b‘(,g)’(D,(‘g)}’Hc }‘

Consider the last term of Eq. (B1), since the ®’s are first
class on M, then

[{(D;(too)aq)ig)}(p:g)] 170 0’
this implies that

(2,27} = 0(22) + 0%(22),
where O(<I>““:’) is a function that contains a term linear in
®;,and 0*(® ) is a function of @ that contains a term

quadratic in <I>l“2’ as the lowest-order term. This means that

the last term of Eq. (B1) vanishes on the surface M,, there-
fore (B1) becomes

{0, 02} =z {0, 00}.

This means that the above matrix is symmetric with respect
to the interchange of 1, and v, on M.

Let us now consider the matrix of the PB between the
primary first class constraints on M, and the tertiary con-
straints. We have

@D.20) = (O H )0} = (B0 H IO
M,
= — ({o@,BVIH D) + {0P,)

Y1
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- — {00 )
— EO@PY) — (P HD.ON)

1 ig!

= — ({&)), 0.0 H (P}

+ ({®L2. 00 H () — {2,900},

The PB {®”,®{"’} vanishes on M,, furthermore we have
(CRRSDEA

= — {2Q,00100) — (BRI} =0,
therefore

© (DY} © ) () 2@

{22,0"} = 0(®,’ +0(2.7) +0(9,”) + 0%(D,"),
which implies

({0, @LIH ) =0.
Equation (B5) becomes

@200} = - (02.0%,

which means that this matrix of PB’s is antisymmetric. This
antisymmetric property is due to the twofold application of
the Jacobi identity. In the general case for the primary first
class constraints on M, and the K-ary constraints, we will
have

@PO0) = (— D* HoP. o).

APPENDIX C: RELATION TO DIRAC BRACKET

We want to study the relation between the procedure
developed in the text and the standard Dirac bracket formal-
ism for the second class constraints when there are no quar-
tiary constraints. In this case the second class constraints are
PP, P D PP if we use the Dirac bracket

Ho H H2 # H2 B2
with respect to % <DL?’ @2, Eq. (3.48), we only need to
consider the constraints (2,0, 2, Let y , denote any-
[ar M2 2 H2

one of those constraints and matrix D *, = {Xui X., }*:. Us-

. H2V2
ing the relations

(0.0 = (0200}, v
we have
0 0 _ C(3
p?=| o _c® _B (C2)
M, c® B Q

where C ®is given by Eq. (3.32). Theinverse matrix D ®~!is
given by

M C(3)—ch(3)~l C(3)——1
pO-1_| — c®-—1gc®-1 _c®-t 0 ,
—co-! 0 0
(C3)
where
M= C(S)—lgc(3)—l 4+ CO-1pCO-1gCd-1.  (C4)
Batlle et al. 2961



At this point we can write the final Dirac bracket
{4,B}" = {4,BY": — {4,y }*D 3 {x,, B}™

If we consider (C5) for the case B = Hc, we obtain

{A,Hc}”’: {4,H}.

Therefore the evolution on M, with the Dirac bracket for-
malism coincides with our procedure.

APPENDIX D: PROPERTIES OF THE OPERATOR X
Here we want to show that the operator X,

K: A%T*Q)-ANTQ), (D1)
given by
d  dL a
K=¢FL* — + —FL* — D2)
7 ¢ J¢ ap, (

applied to the primary Hamiltonian constraints ®> pro-
duces the first generation of Lagrangian constraints x‘°’ In
fact

4P )
Kp» = q‘FL"‘ + Z:’ FL* g—j—“— , p=1l,.,m,
/4
(D3)
and from Egs. (2.7) and (2.21) we have
P )
FL* 3 p" = Vs (D4)
IP© 32
L' 5 = 7 aafﬁﬁ _r“%’ (D3
q q
therefore
d%L
(0 o (N
K, _7"‘( dq' aq"aqf ) =Au (D)

In general, the operator K applied to a function
geA%(T*Q) gives its temporal derivative expressed in
A°(TQ), which we denote by f; (¢,4). Let us now study the
projectability of f; :
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dg dg dL
(L, f,)= (FL* )I‘ (FL" )I‘ —. D7
[ f; a + aq‘ H aq, ( )
Using (D4) and (D5) we obtain
T, f, = FL*{g,0®}. (D8)

Therefore f, — A°(TQ) will be FL-projectable if g — A°(TQ)
is a first class function with respect to the primary first class
constraints on M. In particular using (D8) we have

T,x{" = FLH{o,0}, (D9)

which states only that the Lagrangian constraints associated
with the first class primary constraints are FL-projectable.
Another consequence of (D8) is

L = L0 000,
which tells us that the only Lagrangian constraints associat-
ed with the secondary Hamiltonian constraints which are

first class with respect to the primary first-class constraints
on M, are weakly FL-projectable.
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A simple method for the evaluation of path integrals associated with quadratic Lagrangians is
discussed. This approach makes use of a relationship between the Van Vleck-Morette
determinant and a limit that involves the Chebyshev polynomials of the second kind.

I. INTRODUCTION

In this brief paper we would like to point out a connec-
tion between the Van Vleck—Morette determinant of a path
integral over a quadratic Lagrangian in one spatial dimen-
sion, and the Chebyshev polynomials of the second kind
Uy (x). Let the Lagrangian be given by

L= (m/2){#* - o’x’}. (1
Following Schulman' [see Egs. (6.16) and (6.17) on p. 34],
we write the propagator as

G(Xyty3%a5t, ) = expliS(x, t,3%,:t,) }
l' ( m 172 N ( 12 d )
Xlm | — T n
N0 2ﬂ'i€) — nl;Il y

N
Xexpl — 3 [0 —y,->2—62a>2y}]],
i=o0
)

where €= (¢, —t,)/(N+1) and y,=0=yy,. To
evaluate the N-dimensional integral we first define a vector y
in N dimensions '

= Que¥n) (3)
(the tilde denotes transpose; our y is denoted as 7 by Schul-
man), and a real symmetric N X N matrix T such that

N
JTyy = Z Wi —yj)z'
j=o

As is well known, and as Schulman explicitly shows, T has
diagonal matrix elements equal to 2, matrix elements equal
to — 1 directly above and below the main diagonal, and
matrix elements equal to zero elsewhere. We define a real
symmetric N X N matrix T (x) by replacing the diagonal
matrix elements of Ty, namely 2, by 2x. We have
Ty (1) = T, . We note that the argument of the exponential
in the integrand of Eq. (2) can be written as

N
- E [Be1 —)’j)z_ezf"zy}]
j=0 ,

= —jTyy + €y = —H{Ty(1) — €I}y

= — Ty (1 — €0°/2)y.
Hence the propagator of Eq. (2) is given by
G(Xyty3%0.1,)

= exp[is(xb’tb Xa ’ta ) ]

X lim {m/2mie det[ Ty (1 —620)2/2)]}”2. 4)
N—roo
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We shall prove thatdet T, (x) = Uy (x), so that in this sim-
ple case the Van Vleck—-Morette determinant involves the
lim,_ €Uy (1 — E0%/2).

Il. CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

As discussed in the previous section, we define a real
symmetric N X N matrix according to

2x -1 0 0
-1 2x -1 0
Two=l 0 -1 2 —1 . (5)
0 0 -1 2 -
Let

We find that Dy (x) = 2xDy_,(x) — Dy _, (x), a result
that follows easily upon expanding det T, (x) along the first
row. Letting N — 1 - N, we record this result as

Dy, (x) —2xDy(x) +Dy_,(x)=0. ¥))
Moreover, Eqgs. (5)—(7) imply that
Dy(1)=N+1. €))

Hence, by Egs. (7) and (8) we deduce that the Dy (x) are
the Chebyshev polynomials of the second kind Uy (x) (see
Ref. 2) Dy (x) = Uy (x).

The Uy (x) may be defined as

Uy(x) =sin(N+1)8/sin @, 9)

where x = cos @ (see Ref. 2). For the problem at hand,
x =1 — €w?/2, so that @=ew. We see that

lim €Uy (1 — €0°/2) =sin[w(t, —1,) /0.

N—ow

Thus we find that
G(Xyuty3x,t,) = [ma/2nmisin{lw(t, —1,)}]"?

X exp{iS(x,,t,3%,:2,)} -

Although we have obtained nothing new, the reader may
find some appeal in the directness and simplicity of this ap-
proach that utilizes the Chebyshev polynomials of the sec-
ond kind.

'L. S. Schulman, Technigues and Applications of Path Integration (Wiley—
Interscience, New York, 1981).

2Higher Transcendental Functions, edited by A. Erdelyi (McGraw-Hill,
New York, 1953), Vol. 2, pp. 183-187.
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The linear zeros of 6; coefficients are fully parametrized apart from a multiplicative factor in

terms of four integers.

I. INTRODUCTION

Zeros of 6 have been studied recently by means of Dio-
phantine equations.’™ Racah’s expression for the 6/ is an
alternating polynomial multiplied by a normalizing factor.
Equating the polynomial to zero gives an equation to be
solved in integers (Diophantine equation). The case that has
been studied mainly is that of linear zeros (also called zeros
of degree 1, or of weight 1), in which the polynomial is a sum
of two terms. Some results have been obtained also in the
case of zeros of degree 2 in which the polynomial is a sum of
three terms.’

In this paper we present a complete parametrization of
the linear zeros of the 6j.

Rather than using the angular momenta, we use the de-
composition of 6 in terms of closed diagrams.® The corre-
sponding theory has been developed for coupling-recou-
pling coefficients (3/,6/,9/,12j,...) in general. It allows one to
obtain a formula of the same form as Racah’s 3j and 6 for-
mulas for any coupling-recoupling coefficients. Since this
theory was presented in a rather abstract way, we specialize
it in Sec. II for 6j, in which case the closed diagrams are the
same as the extremal elements.

Il. DECOMPOSITION OF 6/ IN TERMS OF EXTREMAL
ELEMENTS

Let E denote the set of arrays [35¢] formed of integers
or half-integers that satisfy the triangle conditions of the

6{Gef}- If
v a b c] x,_[a’ b’ c’]
“ld e g 7l e f

we define
XX = at+a b4b' c+c
d+d’ e+e f+f7V
/lxz[lia Ab /1(:.
Ad Ae Af

(A+C+T—-1)/2
(B+T1)/2

A+B+S5S—-1)/2
(C+8)/2

=(S—1e,+ (T — 1)e; + Ae, + Bes + Ceg + e,
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It is easily seen that if xeE, x'eE, AeN, then x + x'eE
and AxeE. In other words E is closed under addition and
under multiplication by a non-negative integer.

Let us call an element ueE reducible if it can be written
asasumu = x + y of nonzero elements x, yeE. An extremal
element is a nonzero element of E that is not reducible.

There are seven external elements in E, namely,

1ol . 044l . 10}
“=l oy ol 20%5]"”3‘505’
[ 40 (03 4] [5O3
e4—00£], eS';oo]’ e6_050]’
=[000
Tl oyl

Every xeE can be decomposed over extremal elements

x—}:ae,, a;eN, (1)

i=1
but since the extremal elements are linked by the relation
eyt+e;tes=e,+es+eg+ey (2)

this decomposition is not unique, in general. However, the
number of different decompositions is always finite.

Now we rewrite with our notation Racah’s formula for
the value of the 6f corresponding to the array xeE:

1 (=) (e + 1!
N [a!]

, (3)

where the sum runs over all the different decompositions of x
over extremal elements, [a!] = a la,}a;}, |a| = 2]_,a,,
and N is a normalization factor, the explicit form of which is
not useful for finding the zeros of the 6/.

Let us mention briefly how the symmetries of the ¢/ (in-
cluding Regge symmetries) come about in this picture. They
correspond to permutations of extremal elements within
(e,,€55¢3) and (ey.es,e6,e,). These 6:X 24 permutations leave
Egs. (2) and (3) unchanged.

One of these symmetries apart, the 6/ for which sum (3)
contains two terms have arrays with two possible decompo-
sitions:

(B+C+S+ T—2)/2]
A+S+T-1)/2
=e,+Se,+ Tes+ (4 —1)eg+ (B—1es + (C— 1)eg

(4a)
(4b)

®© 1986 American Institute of Physics 2964



where 4, B, C, S, and T are integers >1.
Such a 6j has value zero if and only if

ABC=ST(A+B+C+S5+T). (5)

Remarks: (1) Various formulas other than Eq. (3) are
known for the value of the 6/, so the definition of a zero of
degree k (when the polynomial part of the formula is a sum
of k + 1 terms) depends on the formula. However, for the
formulas (22.1b,v,g,d) of Jucys and Bandzaitis® it can be
checked that the number of terms of the polynomials is al-
ways greater than or equal to the number of terms in Racah’s
formula. So a zero of degree k for such a formula is a zero of
lesser or equal degree for Racah’s formula. Racah’s formula
is then simpler; for example, a linear zero for Racah’s for-
mula can appear as a zero of degree 2 for another formula.
Let us notice, however, that there is always a symmetry of
the 6/ such that the degrees become equal.

(2) Equation (5) is the same as Eq. (4b) of Brudno and
Louck!. They found too that the variables S,7,4,B, and C
were the most convenient ones.

(3) The general coupling-recoupling coefficient is ex-
pressed by a formula® similar to Eq. (3) that can be used to
study the zeros of these higher coupling-recoupling coeffi-
cients. We only examined the case of 9/ of degree 1, but noth-
ing really new results since these 97 reduce to ¢/ or 3j coeffi-
cients by formulas like Eq. (24.16) or (25.14) of Jucys and
Bandzaitis.®

lil. PARAMETRIZATION OF THE LINEAR ZEROS

Equation (5) is homogeneous so that from a given solu-
tion (A4,B,C,S,T) we can generate a ray of solutions
(A4 ABACASAT) obtained by multiplication by

A = p/gcd(4,B,C,S,T), (6)

where p is an integer and gcd(---) designates the greatest
common divisor. The general solution is obtained by finding
one solution on each ray and then by multiplying by the
factor A.

Theorem: All solutions of Eq. (5) are obtained exactly
once by multiplying the factor A with the parametrized solu-
tion

A = (ab — st)a,
B = (ab—st)b,
C=st(a+b+s+1), : (7
S = (ab — st)s,
T = (ab — st)t,

where the strictly positive integers a,b,s,t are relatively
prime, and such that ab > st.

Proof: Let us start with any solution (4 ,B',C',8',T") of
Eq. (5). Then we can write

2965 J. Math. Phys., Vol. 27, No. 12, December 1986

A’=qa’ B,=qb; S,——_qsy T,=qt’ (8)

whereq = gcd(4',B',S',T'),anda,b,s,tarerelatively prime.
Rewriting Eq. (5) as

(@b—st)C'=gqgst(a+b+s+1),

and multiplying the solution given by Eq. (8) by (ab — st)/
¢, we obtain another solution on the same ray. This solution
is that given by Eq. (7). This proves that all solutions are
obtained by multiplying (6) and (7). Conversely it is easily
checked that different sets of a,b,s,t,4 give rise to solutions of
Eq. (5), which are different because of the condition
ged(a,b,s,t) = 1, thus proving the theorem. O

IV. CONCLUDING REMARKS

(1) The simplicity of the parametrization has been
reached at the expense of symmetry: Equation (7) is not
symmetric in the permutations of 4, B, and C. A symmetric
parametrization seems much more difficult to obtain.! This
can be compared with the famous Pythagorean equation
x? + y* = 2%, A classical theorem’ states that the general so-
lution with integers x, y,z is given by multiplying by a factor
the parametrization

x=r—s y=2s, z=r+4s,

where r and s are integers. This parametrization is not sym-
metric in x and y.

(2) From Brudno and Louck' we have that Eq. (5) for
rational numbers is equivalent to a system of Diophantine
equations

X+ Y+Z=U+V+W,

X+ YV+2°=U0+V*+ W3

The parametrization (7) gives then a full set of solutions
of this system as (apart from a multiplicative factor)

X=ab(a+b+2s)+st(—s+1),

Y=abla+ b+ 2t) +st(s —1),

Z=ab(a—-b) —st(Qa+s+1),

U=abla+b) —st(Qa+2b+s+1),

V=ab(a—b) +st(2b+s+1),

W=abla+b+2s+2t) —st(s+1).

'S. Brudno and J. D. Louck, J. Math. Phys. 26, 2092 (1985).

2K. Srinivasa Rao, J. Math. Phys. 26, 2260 (1985).

3S. Brudno and J. D. Louck, J. Math. Phys. 26, 1125 (1985).

4S. Brudno, J. Math. Phys. 26, 434 (1985).

5. J. Labarthe, J. Phys. A 8, 1543 (1975).

SA. Jucys and A. Bandzaitis, Teoriia Momenta Kolichestva Dvizheniia v
Kvantovoi Mekhanike (Mintis, Vilnius, 1965).

L. J. Mordell, Diophantine Equations (Academic, New York, 1969).
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General recurrence relations for the calculation of two-center harmonic oscillator (HO)
integrals are obtained by means of a hypervirial-like-theorem commutator algebra procedure,
combined with a second quantization formalism. The method is based on a linear
transformation between the creation and annihilation operators of two displaced HO with
different frequencies. Ansbacher’s recurrence relations for the calculation of Franck—Condon
factors are obtained straightforwardly from the proposed general recurrence relations. The
application to polynomial, exponential, and Gaussian operator integrals is shown and new
recurrence relations are given. In all cases, the proposed recurrence relations reduce, as
particular cases, to the corresponding formulas for the calculation of one-center integrals.

I. INTRODUCTION

Closed formulas for two-center matrix elements of
quantum mechanical operators in the harmonic oscillator
(HO) representation can be evaluated in a number of differ-
ent analytical or algebraic ways. Whether these are obtained
by direct integration with wave functions or indirectly by the
use of the generating function,’ the Hermite polynomials are
explicitly or implicitly involved. As an example, Morales et
al.? have proposed an algebraic approach based on the com-
bined use of Cauchy’s integral formula for a complex vari-
able and the Baker-Campbell-Hausdorff theorem to deter-
mine closed formulas for the evaluation of matrix elements
of polynomials operators in the HO representation; a more
general closed formulation for arbitrary operators will fol-
low in a forthcoming publication. However, despite the aes-
thetic advantage of the closed form expressions, in practice,
they are sometime cumbersome to use making the recur-
rence relations desirable. In this aspect, we have proposed
recently® an algebraic procedure, based on the hypervirial
theorem and ladder operators, which is useful in the deter-
mination of general recurrence relations in the calculation of
one-center HO integrals of arbitrary operators. The results
thus obtained are given in terms of eigenenergies and poten-
tial parameters without the explicit use of the eigenfunc-
tions. In the present work, the idea expressed in Ref. 3 is
extended to the determination of the appropriate general re-
currence relations for the calculation of two-center HO ma-
trix elements; this is displayed in Sec. II. The subsequent
sections are devoted to the application of the proposed gen-
eral recurrence relations to the determination of the corre-
sponding expressions to overlap, polynomials, exponential,
and Gaussian operators. New recursion formulas are given
and are shown to be very easy to handle.

Il. GENERAL FORMULATION

In order to determine general recurrence relations for
calculation of two-center HO integrals, let us consider two
displaced HO’s with different frequencies (wg,w) and re-
spective Hamiltonians:
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I?G = (ag aG +‘&)ac ’ 2.1
and
Hy = af 6g +ag, (2.2)

where a; = fiwg and ay = #iwg. Here G and E refer to the
ground G ( | and excited | )E states, and &44(dg)
[a@# (ag)] are the creation (annihilation) operators with
the properties

af me=Vn+1|n+1)g, &Eln)E=\/;|n'—1)E’
2.3)

c{mlag =ym+1s(m+1],

c{mlag =Vm o(m—1|.

In the most general case, these two HO’s are centered at
different equilibrium positions (X;,X;) and have different
force contants. However, the positions for both oscillators
are related to each other by X; — X = /. Consequently, for
the derivation of recurrence relations useful for practical cal-
culations, the spatial displacement and different frequencies
can be treated simultaneously by using the linear transfor-
mation between the ladder operators {44,d¢,1} for the
ground state and those corresponding to the excited state
{ég,ag 1}, this relation is conveniently given by the or-
dered expressions*

(1+BYag =28%y + (1 —BVag + 2Ba,

24)

(2.5)
and

(1+BMaf = =28y — (1-B%ég +2838¢ ,

(2.6)

where £ and y are the spectroscopic constants given by

B= (urwg/pcwc)''* and y = (ucws/#)'?1,
where uz (1) is the corresponding mass.
A. Right-hand recurrence relation (7>m)

Letf (az,a7 ) = fr be afunction that may be expanded
in power series in & and &, that satisfy the commutation
relation [8,,37 ] = 1; the choosing of f (Gg,3d ) leads to
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PO 5 A
similar results. It can be shown” that [Hg, f (87 85)] = ag 83 ay fs +follas — Hi}.

9,
[3g.f (85 85)] “a“i , Q2.7 (2.9b)
o The normal ordered expression givenin Eq. (2.6), combined
[8,f (2 ,a5)] = — a‘E . (2.8)  with the commutation relation
dg
An hypervirial-like-theorem commutator algebra leads to 3 e Y + s s
E - E
F) F) daf dagf dag  daj
[HE,f(aE dg)] =ag [&* {’_‘: - {E &E] »  (2.9a) 8 B
gz  dg and the properties specified in Eqgs. (2.3) and (2.4), trans-
and forms Eq. (2.9a) into
N |
[(1 +Bz)/aE]G<mI[HE!fE]|n>E
e
= —J—Zﬂra(ml ezt |”>E +28\m g(m — 1|3.+| n)g — (1—B%) g(m |W|”)E
—(1=B"Wng <m| |n—1>E (2.10)
In a similar way, the identity
(1+B8% a3 +28a4 afE
A4 %f fE A 2 A A
+2B844 fgag — (1- B2 )—A-————Z(l -B? ) g — (1 —B*)fragag
da} dag
transforms Eq. (2.9b) to
[QA+B )/aE](,'(mI[HE)fE]'n)E = _\/iﬂyc(ml a7 |n>E ﬂ?’\/ﬂc;(mlfb‘ln — g
+28\m s(m —1fgln—1g
2
~ (=87 o ml s — 21 = B o auln— De

— (1 =BHYn(n-1) G(mleln —-2)e—(1 +8%)n G(mVEIn>E . (2.11)
The general right-hand recurrence relation for the calculation of HO integrals leads trivially, when matching Eq. (2.10) and
Eq.(2.11),to

c{mlf(af ag)n)g = — 1 fyﬂz\/‘c<mlf1~:|”— Dg+ 1 Zﬂﬁz\/%c(m— 1fegln — Dg

1-82 [n—1 _ 1-pB* USe,
_1+52 . c{m|fg|n—2)z — ﬂz\/-c( Ia,.gln Dg

a
+ L c{m| {E
vn dag

[n—1)g, mm#0, n>m. (2.12)

B. Left-hand recurrence relation (m> n)
The twin general recurrence relation of Eq. (2.12) is similarly obtained from

28 + 9 1-B%. ., d: _ e , 1—-B82dfF ,
132 B lel =06 o —175% &, "3, ot 1T a7 aar o (2.13)
and
[Ho,fe] = (Hg —ag/2)fz —agft 44 g - (2.14)

In order to avoid the operator 4, at the right side of the f derivative, we can use, in Eq. (2.13), the identities
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2 g2 2 g2
e ., . s 1-B> 3% 1+8* 9% _ (2.15)

d;=a +
da, ° ° da 28 dag ey 28 dag dag
and
a a —pg* a2 2 g%
Fe py—to Le (1B OTe 1487 e (2.16)
dazt dat 28  dag dag 28 dagF da}
along with the ordered expression (2.5). Thus, the use of the commutator relations
g a2 g
. {E — . fE + fE AE’ (2.17)
daf  daF dag  dag
a a2 a
&E fE _ fE + fE AE, (2.18)

da; daf dby Oy
with the properties specified in Eqs. (2.3) and (2.4), allow us to obtain

L ¢ {m| [Hs, fx] |7} e

E

— o atm 1| i)~ L o= 1 S
= G<m|:§§|n>,g ‘}:Am (52 tml L
- otm |aﬂ+2f;+. e =1 otml Z,‘;Esm
(2 ot w1 ol = 1) = ol S~ D (2.19)

In the same way, the identity

By 4 o, By He By (1B ¥z
ET B day B (1487 day

1-p2., 9 (1-8%% .., 9
dg —— — dg
2B day  28(1+B% dag
—~B2 4 —B%»2 4 —pB?
1-B2 dfe ar — (1—-8%2 dfy ar + 28 83 fobp + I 3 _1-B g 2y, (2.20)

+ a
B da; ° 2U+BMaday ° 1482 ° da; © 1+B*da;
with the commutation relations
a 2 g2 — B2 2
Ve as —ag B{E L148” fEA _1-p Aa fEA (2.21)
dag dag 28  dag dag 28 daF dag
and
d 2 g2 —-g* 92
s gi mag Lo JABL 0T 1B 9% @22)
dag dazt 28 dag daj 28 dagf daF

is used in Eq. (2.14) along the properties of ladder operators in order to get

al G (m| [HG’fE] |”)E
BZT B e

=mc<mlf51n>E—l+ﬂzmc<m—11f£|n>5——£—a<m| T ny, +ﬂ;8"’3’ o(m |:fi| Ve
—I_BZJrT(mTI)G(m—szn)E— ~1 fE|>E+(1—ﬁ) Jm otm =11 Y2 1y,
1+B2 Bl + da;
‘4;2 o(m| — gElnn—ﬁ{;—z)c(mI%%Inn—%Wa(m—lleln—1>E
—n g{m| ZZ‘"_DE’Li J_ <m|aﬁ|n—1)5
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+(IZB )G< | 9 fe

Ml )E+(12ﬁ )c( |

0Ye

The general left-hand recurrence relation is likewise obtained from Eq. (2.19) and Eq. (2.23). It is given by

a{mlf @z .35)In)g

—ITBZJ_G<m—1V‘EIn)E+1 zéezﬁg(m—llﬁ”n—l)E

_pn2
+:+§2,/ = o (m— 2fylns + - 2‘3

Both Egs. (2.12) and (2.24) are exact general recurrence
relations for the calculation of two-center HO integrals of
f(ag,af ) arbitrary operators.

Before presenting some examples that show the useful-
ness of the proposed general recurrence relations, we want to
point out that these equations contain, as a particular case,
the generalized recurrence relation for the calculation of
one-center HO integrals of f (3,8 ) arbitrary operators.> In
fact, in the particular case of @y = wg and /=0 we get
B =1and y = 0. Consequently, Egs. (2.12) and (2.24) re-
duce to’

(m — n)(mlf (@*+,3)|ny = (m — lf—‘%lm

—J_(MI ln—l)

(2.25)

This last equation is identical to that obtained from the hy-
pervirial theorem and the second quantization formalism.>

ill. APPLICATIONS

In this section we present the most useful particular
cases used in literature and new recurrence relations for the
calculation of integrals of power, exponential, and Gaussian
operators are shown.

A. Overlap integrals

These kind of integrals are particularly useful through
the so-called Franck—-Condon factors and are obtained
straightforwardly when f (4,37 ) = const. In such a case,

e _ I _,

3.1
dag  dag

When applied to Eqs. (2.12) and (2.24), the following ex-
pressions are obtained:

c{mn)g

- __br -

N 1+B’\/_ (i =10
28 m —1ln—

+1+ﬁ2\/:6<m tr—1)s
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———awl ng . (2.23)
c(m n#0, m>n. (2.24)
— 2 —
_:+ZZ /” - L (min—2), (3.2)
and
c{m|n)g
_ By (2
(" o tn—
+1+B2\/;G<m ln—1)g
1-p2 /m—l
+1+B2 - clm=2\m)g . (3.3)

These are the well-known recurrence relations given by Ans-
bacher® widely used in vibrational spectroscopy for the cal-
culation of Franck—Condon factors. Their usefulness stems
from the fact that any overlap can be calculated from the
generator transition element

c(0/0) =(T%5)m e""( 2(1 :f; >)

which has been also evaluated algebraically elsewhere.*

(34)

B. Integrals of power operators

Let

fagat)=XK=Xk+1, (3.5)
where the position operator X,  is defined in terms of ladder
operators by

X = @/ D)@ +07) . (3.6)
Its partial derivatives are given by
a d
e _Ye _k+1) 222 (3.7
day  dag V2

At thls point it should be noted that, depending on the choice
of X ¢%+1 in terms of ladder operators, many recurrence
relatlons can be obtained from the general right and left-
hand recurrence relations. However, the most useful recur-
sion formulas come from the identities
(a) Xi+'=REX,,
and
(b) XE+'=X_ Xk, (3.8b)

In case (a), the use of the definition (3.6) in the general
right-hand recurrence specified by Eq. (2.12) leads to

(3.8a)
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n(n—1)(1+ 8% s(mzg|n)g
=[B%2k+1) =2n+3Nn(n = 1) g{m|Z%|n —2),
+28(n — Dmn g(m — 1|ZE|n — 1) g + 28mn(n = 1) (n —2) g{m — 1|&%|n —3),
— (1 =B Wn(n —=1)(n—2)(n =3 g(m|%k|n—4) g — By(n — I)V2n o{m|2g|n — 1),

—Br2n(n —1)(n —2) g(m|&E|n —3)¢ . (3.9)

Similarly, the corresponding second recurrence relation for the calculation of integrals of X &, is obtained from the general
left-hand recurrence relation, i.e.,

mn(1+B%) o(m|X &)
= — (1+B8)mfn(n—1) g(m|X%|n —2)5 + B ymf2m (m —1X% lu>z +B>n2nm(n — 1)
X g{m —1X%|n —2) 5 +28(n + k)WWmn o(m — 1|X%|n — 1)z + 28 mn(n = 1) (n — 2)
XG(mullXEtn—3)E+(l—B )n‘/m(m—l)a(m-—ZIXEIn)E
+ (1 =B mim=Dan=1) g(m—2|X%|n—2);, m=£0. (3.10)
We can observe that in the case of ®; = wg and / = 0, the above two equations reduce to
(m—n+ Dn(m|X*n) = (k+ OWWm{m —1|1X*n—1) —(m—n+k+2)0yn—1 (mX*n-2),
n+m32, n#Fm+1, (3.11)

that is, one of the recursion relations obtained from the hypervirial theorem and ladder operators for the calculation of X “one-
center HO matrix elements [Eq. (4.4) in Ref. 3].
Case (b) can be treated similarly through the identity

aF +ag =P +B8s — 2By, (3.12)
in order to get the recurrence relations

mn(1+ B2 o(m|X%|n);
= —n(1 +BNm(m—1) g(m —2|X%|n),
+7(1+B)n2m o(m — 1R % |n) g + 28 nm(m — D (m —2) g{m —3|X%|n — 1),
+28(4* + k+m)Wmn g{m — 1X%\n — 1) — 3By 2nm(m — 1) g(m — 2|X%|m — 1),
— (=B m(m —Dn(n—-1) 5(m— 2|X n—=2) —m(1l =B)n(n =1) 4 (m|X |n—2)g
+y(1 = B2mn(n — 1) g{m — 11X &|n —2)z — BymiZn o(m|X5|n— 1)5 (3.13)

and
m(m — 1)(1+B?) o(m|X%|n)
=[2k+1—B2Q2m+27 — HWmm — 1) oém —2|X%|n)
+¥(1+28%)(m — 1)2m (m — 1 X 5 |n) g + 7(28% — 1)JZm(m — D) (m —2) (m —3|X&|n)g
+2.BJnm(m-1)(m——2)G(m—3[X’§|n—I)E+Zﬂ(m—l)\/7n7g(m-—-l|X§|n—l)E
— 28panm(m — 1) g{m — 21X %|n — 1) + (1 — BOm(m — D) (m — 2)(m —3) g(m — 4 X%[n)g. (3.14)

As before, the above equations reduce to the corresponding  C. Integrals of exponential operators
one-center recursion relation when =1, y =0, i.e, Let

(n—m+ 1)m{(m|X*|n)

~ Sflag.ag ) =-exp( —pXE) (3.16)
— - — - k
= —(n—m +k+2)(\/:n 1{m —2|{X*{n) The use of
+ (k+ Dyn{m —1|X*|n — 1), I 4 &
Ve _Ws _ PP o —pRa) . (3.17)
n+mp»2, n#Em-—1, (3.15) day oddg 2
as reported in Ref. 3. in the corresponding equations (2.12) and (2.24) leads
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straightforwardly to the useful recursion relations

 {m|exp( _PX’E)I”)E
% _ (m — 1|exp( — X )n—1)
e\ po -

- i ;gz.‘ , n; L o {mlexp( —PX’E”” -2

_ B(Bpag +7)

1+8° n
X g{mlexp( —pXg)|n—1)g,
n#0, n>m, (3.18)
and
c{mlexp( —pXy)|n)g
=ﬂ’i’;—;§"l\/gc<m—l|exp<—piwnn
+1-f—€92 G(m—llexp( p:l\’E)ln—l)E
—— 2 — A
+1 5 /’"m L om—2lexp(—pRe) s
m#0, m>n. (3.19)
|
a Jj 28pa®. ~ 2
a; dag n i

exp(—p

The generator matrix element is given by

v + B2p*/2)

o (Olexp( —pf?E)l())E = exP[ (Bp(l +89) c€0[0) ¢ .

(3.20)

The corresponding recurrence relation for one-center HO

integrals is®

(m — n) (m|exp( —pi’) |n)

=p(n/2) (m|exp(
—p(m/2) {m — 1]exp(

with generator

—pX)|n—1)

—pX)|n), (3.21)

(Ojexp( —p.,X\’)|0) =exp(}p?) . (3.22)

D. Integrals of Gaussian operators
We consider finally
flagas) =exp(—pX3).

In this case, the normal ordered relation

(3.23)

2 2
28 pas (3.24)

exp(

where 7 = 1 + B2 4 282a% p, is used, respectively in, Eq. (2.12) and Eq. (2.24) in order to get the appropriate recurrence

relations:

c{mlexp( — PXE)I")L':—\/_G(”’—”exP( PX Jin—1g

_n= 2‘B ’ G(mlexp( pX Yn—2)g

17

— g{m|exp( —

and

)ln_l)Es n#oy n>m, (3-25)

2, 1 2 ~
o(mlexp( —p R2) 1) —”—7—”—2”“5—\/‘ o(m — 1lexp(—p X2)|n)s

\/—‘G<m"'l'exl3( PX )n—1)g

17 ’ - G(m 2exp(—pXL)|n)y, m#0, m>n,

with generator given by
c{Olexp(—p X£)[0)z

=(14£&) 172 exp(

where

£=2p8/(1+8%).

l
0[0)., (3.27
2 <1+§))G( 02, (3:27)
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(3.26)

As before, the particular case of the corresponding recur-
rence relation for the evaluation of one-center integrals
arises from Eqs. (3.25) and (3.26) forf = land y = 0. Itis
written

(m — n){m|exp( —p?2)|n)
= [p/(1 +p) Wn(n — 1) (mlexp( — p X?)|n — 2)
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—[p/(1+p)WNm(m —T1)
X {m — 2|exp( —pi’z)ln) . (3.28)
This last equation can be transformed, by the use of the iden-
tity®
[1/(1 +p)lexp( —p X*)aa
= exp( —pi’z)&*& + exp( —p&z)&&
— [1/(1 +p)1a* exp(—p X)a,
into the useful recurrence relation
(m — n(1 + p))(miexp( —pi’2)|n)
=pyn(n — D) (mexp( —p X?)|n — 2)
— [p/(1 +p) | ymn(m —1| exp( —p X?)|n — 1)

—[p/(1 +p)] ym(m —1)

(3.29)

X {m — 2|exp( —p X?)|n), (3.30)
from where it is directly recognized that
(mlexp(—pX?)|n) =0n+m=o0dd. (3.31)

It should be noted that the use of the recurrence relation
specified by Eq. (3.30) needs only the knowledge of the ele-
ment

(Olexp( —p X)(0) = (1 +p) "2,
avoiding the Chan-Stelman diamond rule.’

(3.32)

IV. DISCUSSION

We have obtained general recurrence relations for the
calculation of two-center HO integrals of arbitrary opera-
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tors, by means of a method that proposes the combined use
of an hypervirial-like-theorem commutator algebra and sec-
ond quantization formalism. Comparatively, the proposed
formulas are by far easier to handle than the corresponding
ones given previously by Wong.! For example, the particular
case of overlap integrals is straightforwardly deduced from
our recursion formulas and the respective Ansbacher recur-
rence relations for the calculation of Franck—Condon factors
are rederived. The proposed general recurrence relations
have been also applied to the particular case of power, expo-
nential, and Gaussian functions and new recurrence rela-
tions are given. In addition, the recursion formulas reduce,
in all cases, to the appropriate recurrence relations for the
calculation of one-center HO integrals. The algebraic proce-
dure shown here can be extended to other potentials.
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3+1 Regge calculus with conserved momentum and Hamiltonian constraints
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The Einstein action is evaluated for space-times whose three-metrics on a family of spacelike
hypersurfaces are piecewise flat. The 3 + 1 action of Lund and Regge [F. Lund and T. Regge
(private communication) ], recéntly generalized by Piran and Williams [T. Piran and R. M.
Williams, Phys. Rev. D 33, 1622 (1986) ], is recovered in this way. A natural interpretation of
the momentum constraint is obtained for simplicial initial data sets; and, by incorporating a
nonzero shift vector and a nonconstant lapse, one finds a formalism in which the constraints
are preserved by the time evolution. (In contrast to the continuum case, the constraints are not
conserved if the lapse and shift are chosen a priori.) A consistent Hamiltonian formalism is
readily obtained by the standard (Bergmann-Dirac) procedure or, alternatively, by
algebraically solving the constraint equations for the lapse and shift on each three-simplex.
Explicit solutions to the classical equations are found for spaces built from congruent
simplices. In this special case, the action is that of a free relativistic particle moving in a curved
space-time with indefinite metric and a conformal timelike Killing vector. For general space-
times, if one a priori sets the shift vector to zero, the action has the form of a sum of such free-
particle actions, but one for which the different particles interact by having coordinates in

commorn.

I. INTRODUCTION

Despite the formal elegance of the four-dimensional
Regge calculus,' it has not yet been used in numerical calcu-
lations of explicit classical space-times. This is due partly to
the fact that its initial value formulation? is unfamiliar, as is
the required machinery of four-dimensional polytopes. Sev-
eral calculations have been done, however, using 3 + 1 ver-
sions, in which space-time is a Cartesian product of a simpli-
cial space and a continuous or discrete time axis.>'? An
action and associated Hamiltonian for a 3 + 1 theory (with
time continuous) was given for homogeneous, isotropic
spaces by Lund and Regge'® in unpublished notes; and a

generalization to arbitrary space-times has recently been ob-

tained by Piran and Williams.'* Their formalism does not,
however, include a discrete version of the “‘momentum con-
straint” of the continuum theory, the analog in gravity of the
Gauss constraint of electromagnetism. For homogeneous
space-times, this constraint is automatically satisfied, but in
the general case it is needed to complete the theory. More-
over, as Piran and Williams observe, the Hamiltonian con-
straint is not conserved by the time evolution of the system,
at least not when the lapse is chosen a priori.

Iit the present paper, we obtain a theory that incorpo-
rates a natural version of the momentum constraint, by eval-
uating the continuum action on a space-time foliated by
plecewise-flat three-manifolds. That is, the space-time met-
ric is continuous everywhere and smooth only in world tubes
that represent the history of three-simplices. For one parti-
cular slicing of space-time, the induced metric on each three-
simplex is flat, determined in the usual way by the edge
lengths, which' thus become the dynamical variables of the
theory. An arbitrariness remains in how one specifies the
lapse and the shift vector, or, equivalently, the time—time
and time-space components of the metric. With zero shift
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we recover the Lund-Regge-Piran—Williams action in the
case of constant lapse. (We were initially unaware of their
work and independently derived an action that agrees with
theirs for zero shift.) When both shift and lapse are present
and piecewise constant (on cells), one obtains discrete forms
of the Hamiltonian and momentum constraints.

In contrast to the continuum theory, the lapse and shift
are not “pure gauge.” In fact, no gauge freedom remains in
the discrete theory: a generic four-geometry of the form de-
scribed above has a unique description in terms of edge
lengths, lapse, and shift.

The reason is that in specifying the class of four-geome-
tries one fixes a foliation of the four-manifold—a set of
t = const surfaces—together with a set of world tubes, the
histories of the flat three-simplices. In general, a metric in
the allowed class will be mapped out of that class by the
infinitesimal diffeomorphism generated by any allowed
lapse and shift: One fails either to thap world tubes to world
tubes or to map the ¢ = const surfaces to each other.

Instead of specifying the lapse and shift a priori, one
must solve the constraint equations for them. That is, given
an initial data set, the constraint equations, togéther with the
equations of motion for the edge lengths, uniquely determine
the time-evolved. lapse and shift. The constraints are. then
automatically preserved by the time evolution of the system.

Regarded as a model! for continuum gravity, the 3 + 1
theory is a substantial improvement over the usual discreti-
zation of the field equations by finite difference equations,
where the constraints are only conserved to lowest order in
the lattice spacing. The 3 + 1 Regge equations form a consis-
tent finite-dimensional Lagrangian system, with a corre-
sponding well-defined Hamiltonian formalism.

The Hamiltonian corresponding to our discrete Lagran-
gian is clumsy, however, because it involves the inverse of a
band-diagonal matrix (the supermetric), which has nonvan-
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ishing contributions from each edge in the complex. One can
avoid this loss of locality by directly evaluating the contin-
uum Hamiltonian for a simplicial metric and a piecewise-
constant conjugate momentum. Again the Hamiltonian and
momentum constraints are preserved and second class, al-
though their structure differs from that in the inequivalent
Lagrangian theory. When the shift is set to zero, our Hamil-
tonian corrects that given by Piran and Williams'? (see Sec.
III).

From the standpoint of quantum gravity, the 3 + 1
Regge theory is complementary to the four-dimensional
functional integral approach considered recently by a num-
ber of authors in the context of Regge calculus.'*3° It pro-
vides a set of minisuperspace theories whose structure is
quite close to that of the full theory. In particular, one has
again a vanishing Hamiltonian, and the associated super-
metric has a conformal Killing vector that corresponds to
uniform scaling of the edge lengths (to changing the three-
metric by a conformal factor).

The plan of the paper is as follows. In Sec. II we intro-
duce a class of space-times having piecewise-flat spacelike
hypersurfaces. We briefly review the description of simpli-
cial geometry in terms of affine coordinates. A simplicial
covariant derivative is introduced and used to calculate the
extrinsic curvature of the spacelike hypersurfaces. Next, in
Sec. III, we compute the Einstein action for space-times in
the class introduced in Sec. I1. We obtain in this way a finite-
dimensional dynamical system whose configuration space
consists of the squared edge lengths of each cell (three-sim-
plex), together with piecewise-constant lapse function and
shift vector. By specifying the shift on cells, one obtains a
natural simplicial form of the momentum constraint. The
equations of motion are obtained and a discussion of the
constraints is given: In the generic case they form a system of
linear equations that can be solved for the lapse and shift on
each cell. A Hamiltonian formalism is then presented, and
the iterative Bergmann~Dirac procedure is shown to termi-
nate, implying the existence of a well-defined Hamiltonian
theory, although in contrast to the continuum case, the con-
straints are not first class.

Section 1V applies the formalism to the simple case
where all three-simplices are congruent. A theorem is
proved to the effect that for any tiling of S > or R * by congru-
ent cells, the dynamical equations can be cast into a form
identical to that for the continuum theory. Two spherical
spaces, the quaternion space and the family of lens spaces
L(p,1), are presented to illustrate the 3 4 1 theory and to
emphasize the ease with which spatial topologies can be han-
dled in the 3 + 1 theory. The family of lens spaces provides
an example of a partial approach to the continuum: asp — o,
the sequence of spaces becomes smooth in two of the three
spatial directions. Finally, in Sec. V, we briefly consider the
corresponding quantum theory for the simple minisuper-
space where all cells are congruent. The constraints can then
be solved explicitly, and the resulting Lagrangian describes a
free relativistic particle moving in a six-dimensional curved
space-time whose (super) metric has signature
— + + + + +. In the general case, where the cells are
not congruent, the Lagrangian has the form of a sum of free-

2974 J. Math. Phys., Vol. 27, No. 12, December 1986

particle Lagrangians, but one in which the particles have
coordinates in common.

Il. SPACE-TIMES WITH PIECEWISE-FLAT SPACELIKE
SLICES

A. Simplicial three-geometry

By a three-geometry we mean a.three-manifold M to-
gether with a positive-definite metric g, . A three-geometry
will be called simplicial if the metric is piecewise flat: that is,
if there is a decomposition of M into a set of three-simplices
(tetrahedra) that intersect only at their boundaries, and for
which g, is flat in the interior of each simplex. A smooth
three-geometry can be approximated by a sequence of sim-
plicial geometries on a fixed manifold M.

‘We will use the following index conventions:

space-time indices: a,5,y,0,
spatial indices: a,b,c,d,
cells of complex: C,D,
edges of complex: ¢, x, 4,
vertices of complex: i, j,k,/.

Space-time will have signature — + + +.

Our calculations are simplified by using an affine chart
on each flat three-simplex.’! Affine coordinates respect the
tetrahedral symmetry at the cost of introducing a superflu-
ous coordinate. Taking the origin to be the barycenter of the
simplex, one chooses as basis {e; } the four vectors that con-
nect the origin to each of the four vertices. The basis vectors
are then related by

z e, =0. 2.1
The affine components of a vector are defined by
v =1, ZU":O, 2.2)

and, in particular, any point x of the simplex has affine co-
ordinates x’, where x‘e; is the vector from the origin to x.
Defining the covariant basis {®’} dual to {e,} by

o'ee=1 Yo'=0, (2.3)
one finds that the affine components of the unit tensor (the
Kronecker delta) have the form

g=fi, 7

-1, i#j.

Then 31'3 projects onto the affine basis in the sense that if
v = i'e;, then v has affine components v’ = 5!7".

The components of the flat metric can be regarded as the
projection to the affine basis of s;;, the squared length of the
edge /; joining vertex i to vertex j:

24)

&= — %S:‘ SJI'SkI . (2.5)

The affine components of the contravariant metric can be
written as follows in terms of the volume V of the tetrahe-
dron and the areas of its faces: Diagonal components have
the form
g'=A4%29V?

(no sum), (2.6)
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where A, denotes the area of the face opposite the ith vertex;
and off-diagonal components have the form
1 ar?
g'= v: s,
Equation (2.7) can be regarded as a form of the familiar
relation

@.mn

o1 98
ga g agab ’
expressing the contravariant metric as a derivative of the
density g, whose value in any basis is the determinant of the
covariant metric components. If the squared volume is re-
garded as a density proportional to g, then Eq. (2.7) follows
from (2.8) and the equation

ag;

I8y
[To be more precise, we are treating {s;} as a set of six
independent variables, and Eq. (2.9) is used here in the form
agnb/askl = - 0)’(‘0 wi) ']

A similar identity relates the second derivatives of the
density g to the supermetric G “*¢

Gabcd= __i azg _____gn(cgd)b_gabgcd'

8 O8u 98ea

The affine components of the supermetric are then given in
terms of the squared volume by
1o
V2 35,35,

Equation (2.5) relating the affine components of the
metric to its projections along the edges can be generalized to

an arbitrary symmetric covariant tensor o, : the component
of o associated with the tth edge (/ ), joining vertices i and j,

(2.8)

- 53, @9)

(2.10)

G = _ 2.11)

o,.=8,=0,1°1" (2.12)
is related to the affine components by
oy = —18¢8l5,, . (2.13)

Then for an arbitrary contravariant tensor 7°° the inner
product of 7 and ¢ involves only the off-diagonal affine com-
ponents of 7
1‘ab0ab = - 57"1&!’ y (2-14)

where &, is taken to vanish for / =j. In particular, we will
use the identity
_1tev

V2 gsds, "’

which follows from Eqgs. (2.11), (2.12), and (2.14).
If n is the unit normal to the face (with area 4) opposite
the ith vertex, Eq. (2.6) implies

(2.15)

abed, —
G0 Oy =

n= (3V/4)o' (2.16)

or

n; = (3V/A)5‘J‘f = (g"i)"’zsj’ (no sum) . (2.17)

Finally, it will be convenient to introduce an explicit
labeling for the vertices and edges of a tetrahedron in Fig. 1
below. Then the tetrahedron’s volume is
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FIG. 1. A tetrahedron labeled in accordance with the conventions of the
text. Letters assigned to each edge denote its squared length.

144 V? = —wx? —vy* —uz? —wx — vy —u*z —xyz

+ Xpv + Xyw + xzu + xzw + yzu 4+ yzv

— Xuv + Xuw + xvw + yuv
(2.18)
and the area of a face with squared edges x,p,z has the form
Al =A(A123)?

— yuw + yvw + zuv + zuw — zvw

=&l —x* =y -2+ 2(xp+xz+yz)].  (2.19)
Diagonal components of the metric are given by

8o=%l—x—y—z+3(u+v+w)] (2.20)
and off-diagonal components by

gn=fl—-Su—z4+v+w+x+y]. (2.21)

(The remaining components are implied by the tetrahedral
symmetry.) The contravariant metric has diagonal compo-
nents of the form

g% = (4y/37)?
and off-diagonal components of the form
= —(V/14VH)[ -2 - 2uz+z(v+w+x+y)
+w—-v)(x—p]. (2.23)

(2.22)

B. Space-times with simplicial slices

We turn now to the approximation of a smooth space-
time by one in which the three-geometries on a family of
spacelike hypersurfaces are simplicial. Consider a space-
time.#"=M X R with smooth metric g,z. Let T, be a family
of embeddings of M into .4, for which the images
M, = T, (M) are a sequence of spacelike hypersurfaces that
foliate .#". Let ¢~ be the vector field tangent to the con-
gruence of timelike curves — 7, (x). (Each curve is the orbit
in 4" of a point x in M.) One decomposes ¢ into vectors
perpendicular and parallel to M, in the manner

t*=Nn“+N*<, (2.24)
where

N=(—=V V)2 (2.25)
is the lapse function,

n,=—N"'V,t (2.26)

is the future pointing unit normal to M,, and N %, defined by
Eq. (2.24), is the shift vector. On 4", specifying a space-time
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metric is equivalent to specifying the lapse, shift, and “three-
metric”

*Bap = *Bup + Mol . (2.27)
Equivalently, if one uses the embedding 7, to pull the lapse,
shift, and three-metric back to M, the four-metric can be
described as a family of lapse functions N, shift vectors NV ¢
and positive-definite three-metrics g, on M, parametrized
by #: That is,

8ap = 71t"(sg)ab (2'28)
and N?4(¢) is the unique vector on M for which
T, (N9)=N*“

Given a simplicial decomposition of M, the embeddings
T, provide a simplicial decomposition of each spacelike hy-
persurface M,. As noted at the beginning of Sec. II A, one
can approximate the three-metric g,, on M, by assigning to
each edge a length equal to the geodesic distance between its
vertices. The resulting piecewise-flat metric on M, then has
in each simplex the form (2.5); the history of the spatial
geometry is described by a set of time-dependent edge
lengths. And an approximating space-time geometry may be
completed by specifying on each cell values of the lapse and
shift that agree with those of the smooth metric at the cell’s
barycenter.

The 3 + 1 Regge theory we construct will then be the
theory obtained by evaluating the Einstein action on space-
times having the simplicial character described above:
space-times foliated by simplicial slices, such that on each
cell the lapse and shift are constant, and the three-metric is
flat, determined by its edge lengths in accordance with Eq.
(2.5). Note that the simplicial decomposition of M and the
smooth family 7, of embeddings of M into .4~ are given
before one has chosen a metric. Consequently, although the
time-time and time-space components of the metric are
only piecewise-continuous, cell boundaries trace out smooth
histories on 4",

C. Extrinsic curvature

In the standard 3 + 1 formalism for the continuum the-
ory, time derivatives of the three-metric on a hypersurface
M, enter the action via the extrinsic curvature of M, . If n, is
its unit normal, the extrinsic curvature of M, can be ex-
pressed in terms of the Lie derivative of ’g,, along n,,,

K= —18"8-%0 805 » (2.292)

if as before, one identifies tensors orthogonal to n, with ten-
sors on M,. Equivalently, for each ¢ one can regard the ex-
trinsic curvature as the pullback to M of K 5,

K,, = (T¥K),, . (2.29b)
From (2.28) we have
al gab (t) = (T? °'2¢ng)ab s (2-30)

whence, by (2.24) and (2.29a), we recover the familiar
expression

K,, = — (1/2N)3, g, + (1/N)VN,, . (2.31)

Then, from Eq. (2.5), the affine components of X, have the
form

2976 J. Math. Phys., Vol. 27, No. 12, December 1986

K; = (1/4N)6,% 8,5, + (1/N)V,N,, . (2.32)

We will see in Sec. III B that the simplicial form of the
momentum constraint leads one to specify a piecewise-con-
stant shift vector. Evaluating the action will have the effect
of approximating the covariant derivative V, N, as a finite
difference, which we can obtain heuristically as follows. De-
note by *C the star of a cell C, the union of C together with
the four cells that adjoin it. The difference N2, — N €,
between the values of N, on two adjacent cells, C and D, is
well defined because the metric is flat on *C: One knows how
to parallel transport a vector from D to C. The problem of
finding the gradient VN, is thus reduced to approximating
the gradient of a scalar.

Let f be constant on cells. Then Vfis a distribution with
support on the faces, and its average over a cell Cis given by

1
A€, :=—dev,, .
Ve Je 4

o)
With half of each & function contributing to the integral (re-
garded as extending halfway across the boundary of C), we
have

deV,,f:

(2.33)

AP fp — fe)

== X A, (2.34)
De*C

where f denotes the value of fon C, 4 P is the outward

pointing normal to face CN.D with magnitude equal to the

face’s area, and Stokes’ theorem in the form 2,4 $2 = 0 has

been used. Then

Ly oA,

2Vc De*C

(2.35)

A, f=

and for the representation of the gradient on C of any tensor
that is piecewise constant on *C we have the identical form

1
AP, . 2.36a
2v, D;c . (2.362)

The analogous formula for the gradient of a tensor density v,
of weight } is

C —
Aavb—

Ay, == 3 V54 Py, . (2.36b)
De*C

The finite difference given here allows a discrete version

of integration by parts for an integral over M. When ¢ and

7, are piecewise-constant tensors, the relation

JdVa“”V,n-,, = —JdVTbVafb

becomes
z Voo A, 7, = — 2 VCT,,CAC,,U"". (2.37
C C
Proof:
2 Vco A, T,
C
1 1
= z 0 — ALy, = — Z 0 — A0,
e 2 D 2
De*C Ce*D
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= — 2 VDADaaﬂbTDb ’
D

where we have used the identity

2 = z (2.38)
C D
De*C Ce*D
and the relation
ASP = —45€, (2.39)

The form for the extrinsic curvature corresponding to
the discrete representation (2.36a) of the gradient is

1
2N,
In practice, because the affine components of N °, will
be given with respect to D ’s affine chart, we need to relate the
affine bases of adjacent cells. Let C and D have vertices 1-3

in common and denote the fourth vertex of each cell by O,
and Oy, respectively. Then, using for i, j = 1,2,3,

KS = — (2.40)

(gab - ZA(CaNb) ) .

e —ef=e’—¢f (2.41)
together with Eq. (2.16), we find, for all j,
05, (85 — n°ny) = wt, (62 —nn,), (2.42)

where n is the unit normal to the common face CN.D (be-
cause n occurs quadratically, the relation is symmetric in C
and D—independent of which unit normal is chosen ). From
Eq. (2.42), the components of a vector v* along the affine

bases of C and D are related by
VP =v+ (n® — n')n-v,

(2.43)

where the components of n are given by Eq. (2.17). The
corresponding relation between covariant components is
then

(2.44)

v, =0, + n,-Dz (n° — rf"’)vjc .
7

lli. ACTION AND FIELD EQUATIONS

A. 341 action and constraint equations

The Einstein action can be written in the form
1=fdtL=Jdth(p""ga,,—N%—N"é!’a), (3.1)

where the three-metric g, , its conjugate momentum tensor
P, thelapse NV, and the shift N, are regarded as independent
variables; here

= —3R+p"p,, — P (3.2)
and

ﬁpa = - 2V,,p"" . (3'3)
For a piecewise-flat metric with affine components given in
terms of the edge lengths [as in Eq. (2.5)] by

g:f= —%S{(Sj Skr s
the curvature is a distribution with support on the edges. The
integral of the scalar curvature over a spacelike hypersurface
is unambiguous,” but the potential term involves a somewhat
arbitrary average value, N,, of the lapse on cells bounding
the edge /, [see Eq. (3.7) below]:
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JdVN3R=22M0‘lL . 3.4)
Here 6, is the deficit angle of edge /,, expressed in terms of
edge lengths of cells that share /, in the following manner: By
definition,

0=27——;¢C,

where ¢ is the dihedral angle between the two faces of cell C
that have edge / in common. Then if 4 and 4 ' are the areas of
the two faces and ¥V the volume of C, ¢ is given by

singe =31V /44" . (3.6)

Finally, the volume of a cell C'is given in terms of its squared
edge lengths by Eq. (2.18), and the area of a triangle with
squared edge lengths x,y,z is similarly given by Heron’s
equation, (2.19).

There is, however, some arbitrariness in how one
chooses to discretize the lapse and shift—to represent them
by a finite set of variables. One choice, in analogy with the
metric, is to make them constant on each cell. Another,
adopted by Piran and Williams, and which we initially used
as well, is to specify the lapse NV on each vertex; it can then be
extended uniquely to the interior of each cell by demanding
linearity in the affine coordinates. The analogous procedure
for the shift vector fails, however, because the three-space
does not have a differentiable structure at the vertices or
edges (to define a vector at a vertex, one must give a separate
value for each cell). In addition, as we shall see below, the
momentum constraint has a natural form in the 3 + 1 for-
malism, and to use that form one must specify the shift on
cells, not vertices. One should then specify the lapse on each
cell as well to maintain lapse and shift as parallel and perpen-
dicular components of a single vector ¢ “—and this is what
we shall do. The choice has another advantage: if N is not
constant on each cell, the action involves integrated averages
of N and N ~!; so the form of the constraints and of the
equations of motion is somewhat simplified by a piecewise-
constant lapse. We resolve the remaining freedom in assign-
ing an average value of the lapse to each edge in Eq. (3.4) by
writing an angle-weighted average,

(3.5)

‘NLGL:=2NC 0l_c, (3-73)

where 6, assigns to cell C part of the deficit angle 6,,

Oc=2n/c, — o, (3.7b)
with ¢, the number of cells sharing edge /.. On each face
CND, the shift will be assigned the value

Nep =4Nec+Np) (3.8)

(but any linear combination of the form aN ¢ + SN %, with
a + f =1, will give the same action). Then, from Egs.
(3.2) and (3.4) the super-Hamiltonian is

deN%= — 22 oN! + Z Nc VC(P?PCab - %P%:) ’
¢ [
(3.9)

where the metric on cell Cis used to contract the indices of
ab
Pc-
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The momentum constraint is obtained in the continuum
theory as the variational derivative of the action with respect
to the shift vector. It has the form

V,pt =0, (3.10)

where p® is given in terms of the extrinsic curvature K, by
Pt= — (K®—g*K°). (3.11)

(The symbol 7 will be reserved for the associated tensor
density, 7°° = \gp™.)

Because the metric is continuous across each face, the
star *C of any cell C is flat, and one can define constant
vectors on *C. (If Cis a cell, its star is the union of C and the
four cells that share a face with C.) Dotted into a constant
vector v°, the momentum constraint has the form of Gauss’
law

vV, (»*v,) =0. (3.12)
We can thus obtain one (vector) constraint for each cell Cby

requiring, for each constant vector v°, that the flux of p®°v,
through the boundary of C vanishes:

f Pabva dSb == 0 .
acC

The extrinsic curvature must be evaluated on the outer
boundary in order to obtain a constraint that is not trivially
satisfied by a p constant on each cell. Equation (3.13a) then
becomes

(3.13a)

S Ppv, AP =0, (3.13b)
De*C
or, in the notation of Eq. (2.36a),
AP =1 3 pa =0 (3.14)
2V, bec ‘

(the flatness of *Cis required to make the sum well defined).

This form of the momentum constraint shares with the
continuum version the feature that it is automatically satis-
fied when p,, is proportional to g,,. Here the constraint
holds for cell C when p,,, is proportional to g, on *C. This is
the case for Regge models of homogeneous, isotropic space-
times, and as a result (see Sec. IV A below) the discrete
equations are identical in form to their continuum counter-
parts.

We shall now verify that by specifying the shift N, on
cells, with the convention (3.8), we reproduce the momen-
tum constraint in the form (3.14) as the variational deriva-
tive of the action with respect to N €. For p* piecewise con-
stant, D,p® is a § function distribution with support on the
faces, and we have

—deN,f/"
=2 [aVNDp" = T Nouf —pIAS”
DEC‘C
= 3 Nap$A$®, (3.15)
pevc

or, from Eq. (2.36a),
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- f AV N, 5% =23 VeNo, A . (3.16)
C

The momentum constraint therefore takes the desired form
(3.14)

1 6L

0=— =2A5p®. 3.17
Ve 5N by 4 ( )
The remaining term in the action has the form
. 1 -
dePabgab = __z'zp‘ésy ’ (3.18)
C

where Eq. (2.5) has been used. Finally, combining Eqs.
(3.9), (3.16), and (3.18), we have

abs a l a
L=3"Vc [pCngb - NC(pCbpfb - ‘2—1’%:) + 2N, A5p™
C

+ Y 2N.6.1, . (3.19)

By treating p°® as an independent variable one avoids the
divergent action that would arise from terms quadratic in
the distribution V, N,. Now, however, we can eliminate p*,
obtaining an action that involves only the edge lengths,
lapse, and shift. Since the Lagrangian (3.19) is already inde-
pendent of 5, its variation with respect to p* provides a
constraint

1 L ( 1
0=—L 9L _ _on(pS —Lgc c)

Ve op® c\Pab —2-g bP

+ 8o — 280Ny, - (3.20)
[Use Eq. (2.37) to obtain the term involving the shift.]
Equivalently,

KS = — (1/2N) (&5, — 245N, ), (3.21)

in agreement with the expression for the extrinsic curvature
expected from Eq. (2.40). With the constraint (3.20) used
to express p,, in terms of the remaining variables, the La-
grangian (3.19) becomes

S 2N,6,1, + Y NV KGK S — (Ke)?),  (3.22)
I C

where K &, is given by Eq. (3.21) and g5, by Eq. (2.5).

An elegant form of the kinetic term was noticed by Lund
and Regge'? in their treatment of the 3 + 1 action for a com-
plex of congruent cells. We recover this form by writing, in
accordance with Eq. (2.15),

KC,,,,KC"I’— (KC)2
1 9%*.?

=GabchCa KCc —
¢ b V:? ds,0s,

KKS, (3.23)

where K € is the projection of K along the «th edge / *:

K&E=KGI%= — (1/2N.) (3, —2A°N,)  (3.24)
and
A°N,: = AS,N,1°1°. (3.25)
Then from (3.22) we have
L=32N6lI — &ﬂlﬁcl{f. (3.26)
: T V¢ s, Is,
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Varying the action with respect to the lapse gives a dis-
crete version of the Hamiltonian constraint, namely
1 0V% pcpc

KfKS
[in performing the variation, note that by Eq. (3.24), K “*is
proportional to N ~'].

The constraint equations (3.14) and (3.27) give a set of
4n_,, linear algebraic equations for the 4n; values of the
shift and the squared lapse. They can therefore be solved
explicitly to give an uniconstrained action, when the determi-
nant of the system is nonzero. We expect this to be generical-
ly true (that the system is nondegenerate), but have only
verified it for a few simple complexes. For large complexes it
may not be feasible to solve the constraints analytically, but
the fact that it is in principle possible to do so guarantees that
the constraints are preserved by the time evolution of the
system. There remains the question of whether the system of
constraints plus field equations will generically have a well-
defined time evolution. Because only ordinary differential
equations are involved, a finite nonsingular evolution is es-
sentially guaranteed. As in the continuum theory, the global
evolution can be singular. Here, in addition to curvature sin-
gularities, the edge lengths may fail to satisfy the triangle
inequalities that allow them to bound flat cells, and coeffi-
cients of the terms with second time derivatives in the equa-
tions of motion may vanish.

(3.27)

C eC

B. Equations of motion

By varying the action with respect to the edge lengths
one obtains the equations governing their time evolution.
[We will regard as independent variables in the Lagrangian
(3.22) the edge lengths, the covariant components of the
shift vector in each cell along the affine basis of that cell, and
the value of the lapse on each cell. ]

The momentum conjugate to edge /, =, joining vertices
i andj is given by

s 9L _ _ iy

7 a, C;” Vepé
Here p. is a tensor [defined by Egs. (3.11) and (2.40)],
while V. and 1 can be regarded as densities of weight 1.

Because of the form (3.7) of N,, the variation of the
potential term has its usual simplicity,

(3.28)

;] dl. N6
LAV NGOIL =25 N == (329
3 2 ghNeteg =7 O
arising from the simplicial form of Stokes’ theorem.
To find 3T /Js;;, we use the identity
)
9" _ pighs (3.30)
ds,

,
which follows from Eq. (2.9). Equations (2.7) and (3.30)
imply the relation

_g_( VG klmn)Klem”
Sii

=2V (g"G)"™ — 189G " K K, (3.31)
Now the tensor K also depends on edge lengths when the
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shift is nonzero because the difference between the shift vec-
tor on adjacent cells C and D involves the parallel transport
of n? from D to C described by Eq. (2.44). (In the contin-
uum theory, of course, the covariant derivative of the shift
vector depends analogously on the metric.) We have

d 1 d
— K¢ =—_""ASN, , 3.32
d, “ Ncas, “° (3-32)
and, from (2.44),
a D C — 3 mp m, D
gij(NkC_N"c) _—;gy[n"c(n —n C)]N"‘D ’
(3.33)
Equation (3.30) implies
d 1 P
—_—n, = ——n,n'r, 3.34
Js;; k 2k ( )

since n, = 8] /\/g? for D opposite the jth vertex of C. Then

using Egs. (3.30) and (3.34), a few lines of computation
yield

9

Sy

(NEC _NEC) = nkC YCDymNﬂb » (3-35)
where
,},CDI.'im = g’"p("pnip) _ gmc("cn jc)
+ nmen'en’c — in'"”(nicrtic +n'?®y . (3.36)
Finally,

a ACD .
— AN, = —n,nyIAN2 .
as,-,- PEAN D;C 2V, xMYep
From Egs. (3.29), (3.31), (3.32), and (3.37), the equa-
tion of motion for the edge /, = /; has the form

(3.37)

0= =gy oL
Tdt a5y ds;
. N6 ) n
=7‘7'”+#" z ZNCVC KZ‘CKCjk_ cKcu
s ¢33,

1 4
- Tgc I(KCkIKCkI - ch)]

- 3 AcopcFmm YNy, (3.38)
C

De*C

In contrast to the continuum theory, the lapse and shift
cannot be chosen arbitrarily. There is in general no gauge
freedom available to simplify the equations of motion, and in
return for exactly conserved constraints one must accept a
system of equations complicated by nonzero shift and non-
constant lapse.

If one regards the 3 + 1 equations as simply a tool for
the numerical approximation of classical space-times, it may
be more efficient to pick a lapse and shift to simplify the
equations. The constraints would then be imposed only as
initial conditions on the three-metric g,, and its first time
derivative. Although they would no longer be exactly con-
served in the limit of small time intervals, the error after a
finite time might be no larger than the numerical error for
the full set of equations.
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C. Hamiitonian formalism

In constructing a Hamiltonian formalism from the ac-
tion of the last section a difficulty is encountered. Although
the continuum action of Eq. (3.1) is already essentially in
Hamiltonian form, with 7** = gp®® as the momentum con-
jugate to g,,, the corresponding simplicial action given by
Eq. (3.19) is deceptive. The kinetic term in the Hamiltonian,

T=YNV& l(qrcabﬂc,,,, — %ﬂ"c) (3.39)
[3]

is nearly identical in form to its continuum counterpart;
however, the momentum #* conjugate to the squared edge
length s, =s; is not 7. but the sum

= —Fw. (3.40)

C

To write the Hamiltonian explicitly in terms of 7*, one must
solve Eq. (3.40) for 7% which is equivalent to inverting a
band-diagonal matrix with e columns, where e is the number
of edges in the complex: the locality of the continuum theory
is lost. If, like §; =35, the component 7.7 were really a func-

tion specified on the edge /,, having the same value #* for
each cell C containing /,, then one could write

= —cmc’ (3.41)

with ¢, the number of cells sharing edge ¢, and the difficulty
would disappear. Unfortunately, a constant tensor o°° has
contravariant affine components that differ from cell to cell,
and it is the contravariant affine components of 7*° that
comprise the momentum conjugate tos,;. As one approaches
the continuum, each tensor becomes essentially constant
over many cells, and the contravariant affine components 77
must therefore change from cell to cell while the covariant
projections 7; of  along the edges are cell independent.

This seems to us a genuine drawback of the theory, but
there is a fairly natural way out. One can require that in the
continuum limit cells in any small region become congruent,
as is the case for a number of repetitive complexes (for exam-
ple, the decomposition of R 3 into cubes subdivided as in Fig.
1). For two adjacent, congruent cells C and D, correspond-
ing edges (and their time derivatives) are equal, and assign-
ing adjacent cells the same value of 7% is then consistent with
the condition that in the continuum limit #¢; = #p;. We
will assume that the simplicial decomposition used has this
property. We then use Eq. (3.41) to assign to each cell the
value of 7.¥ obtained from the single momentum #* conju-
gate tos,.

The kinetic term (3.39) now has the form

T= ;Ncafbcdﬂ'cabﬂc‘:d= (; NcGCLK)ﬂJf, (3.42)

where
~ 1
G et = (88 %a + 80a8 s — 8 as850a)
2V,
(3.43)

and, with ¢ and « labeling, respectively, edges /; and /,,,
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GCp=——Gyy =
w ikl — W
chK Ccch

(SieSi + SuSe — SSut) -
(3.44)

From Eq. (3.16), the term in the action involving the
shift vector has the form

— 23 Ne,AS, 7% =23 AC,N,7c (3.45)
C C

with A€, defined for tensor densities by Eq. (2.36b). Denot-
ing the projection of A€, N, along edge /, of C by
A°N, = A, N,1°1°, (3.46)

we can write the Hamiltonian in the form

= — SN0, + I NG, mr +23 L AN,
C C. C,
(3.47)
with a corresponding action

I=fdt(1'r‘s, —H). (3.48)

This Hamiltonian formalism appears not quite to agree
with that recently given by Piran and Williams for the case of
zero shift. The supermetric G of Eq. (3.44) includes factors
¢, that count the number of cells shared by each edge and
these do not appear in the Piran—Williams version.

The equations of motion obtained from the Hamiltonian
(3.47) have the form

. OH 2
§, =—=25 NG, 7™+ =% AN, (3.49)
or 2(:: ‘ CL;
and
g _OH_NO.
s, 14
2} 3 7
-3y N, —GCK)ﬂ"ﬂ‘——Z —(A°N,) —,
; C(asL * glasl(' ») Ca
(3.50)

where (3 /s, ) (A°N, ) is given by Eq. (3.37). The Hamilto-
nian constraint corresponding to cell Cis

_ OH

0= =~ Y20, +G , 7" (3.51)
AN, ,Sa <
and the momentum constraint is
JH
0= = — 24577, (3.52)
ANE d

In the case of congruent cells and vanishing shift, the
present action (3.48) is identical to that obtained from the
Lagrangian (3.22) of Sec. III B above.

In the Lagrangian formalism of the last section, the con-
straints were preserved by the time evolution not because of
a symmetry of the equations (as in the continuum theory)
but because the constraints formed a linear system that
could be solved to give the lapse and shift on each cell. But
here, because the Hamiltonian is linear in lapse and shift,
they do not appear in the constraints. Instead, the 4n_,, con-
straint equations restrict the initial values of the canonical
variables—the edge lengths and their conjugate momenta.
Because of the lack of general covariance, these constraints
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do not commute with the Hamiltonian, and the commuta-
tors form a new set of 4n_,;, constraints that must be solved.
The new constraints, however, are linear in the lapse and
shift. In general they determine the initial values of the lapse
and shift and provide one additional restriction on the ca-
nonical variables.

In the Bergmann—Dirac?? terminology the constraints
have the following structure in the Hamiltonian theory of
this section. The primary constraints are that the momenta
pn and p,, associated with lapse and shift vanish; and the
momentum and Hamiltonian constraints, Eqgs. (3.51) and
(3.52), are the corresponding secondary constraints. Com-
mutators of these secondary constraints with the Hamilto-
nian (3.47) are not linear combinations of constraints (they
do not vanish “weakly” and therefore constitute additional
constraints) but the commutators do depend on the lapse and
shift. Consequently they do not commute with the primary
constraints, and the Dirac procedure terminates: The com-
mutators do not generate further secondary constraints.

What has been lost in discretizing the theory is the char-
acter of the constraints: The loss of gauge invariance means
that they are no longer first class.

IV. SPACES WITH CONGRUENT CELLS
A. Equations of motion

The simplest space-times of the Regge calculus are those
with congruent cells, for which the lapse is constant and the
shift vanishes. Several authors have constructed models of
this kind, in which a homogeneous, isotropic space-time is
approximated by a simplicial complex with a dust source of
constant density comoving with the lattice.*!' We show
here that regardless of the simplicial decomposition, the
equations of motion can always be cast in the form of the
continuum equations

I %] k

22412 %o, (4.1)
a a a
@ .k

3‘—1-2-+ 3;: 8mp . (4.2)

A more precise phrasing of the result is as follows.

Theorem: Consider any tiling of S 3 or R * by congruent
simplices. Let g, (¢) satisfy the 3 + 1 Regge equations with
zero shift and constant lapse, and for which the source is dust
of constant density p in a frame comoving with the lattice.
Then

8a (1) =g, (0), (4.3)
where
a=a/a, (4.4)

for a(t) and p(2) satisfying Eqs. (4.1) and (4.2).

A similar result holds for the non-simply-connected
space-times obtained by identification from $ 3 and R 3. That
is, if G is any finite group that acts freely and transitively on
S3 (R ?), thespherical space S */G (hyperbolic space R */G)
is locally isometric to.S® (R *) and in the continuum theory,
its time evolution is again a homogeneous, isotropic space-
time satisfying the same field equations. Any tiling of a
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spherical or hyperbolic space by congruent cells induces a
tiling of the covering space (S or R *), and the correspond-
ing space-times, evolved by the 3 4 1 Regge equations, are
again locally isometric. Thus we have the following corol-
lary.

Corollary: The above theorem holds with S and R 3 re-
placed by §3/G and R */G.

To prove the theorem, we first need the equations of
motion for the edge lengths. As noted in Sec. ITIA, the mo-
mentum comstraint is automatically satisfied when the con-
jugate momentum p,, is proportional to the metric, and
from Eq. (4.3), this will be the case if the shift is set to zero.
When the lapse is constant, a constant rescaling of time,
t—t /N gives the equations in their form for unit lapse—a
remnant of the continuum gauge freedom. Then for a metric
with time dependence given by Eq. (4.3), the kinetic term in
the Lagrangian (3.22) is simply

T.= —6Va? (4.5)

and for the equation of motion associated with the edge
I, =1;, we obtain
d{JL aL .. . .8
O=——])——= i+ 3a?)c,Vg' ——.
dt(as,) a5, A H e Vg —g
The Hamiltonian constraint (3.27) for a single cell C hasthe
form

1 1 .
— Y —6,1, +3a*=8mnp,
V Lszc c, P
where ¢, is the number of cells sharing the edge /, and 8, is
the deficit angle of that edge.
Proof of Theorem: The dynamical equations (4.6) imply
that for each edge /, =1, the length a(¢) defined by
a*(t):= —c,Vgil, /6, (4.8)
has the same value, independent of the choice of edge. The
metric’s time dependence (4.3) implies corresponding time
dependence for the edge lengths, volume and contravariant
metric, namely

(4.6)

4.7)

lxe®, Vxe®®, gPace 2=, 4.9)
Then
ila=a, (4.10)

and the equations of motion take the form

. . 2 6 . 2
o=2i(£)+3(1) 2t e 1
dt\ a a c Vg'l a a a

(4.119

in agreement with Eq. (4.1).
Similarly, using Eq. (4.8) to replace @ in the first term of
the constraint (4.7), we have

1 1 v 3
Lor =Ly ¥ 3V
Zc‘ c 022:‘ ‘s, a

and Eq. (4.7) becomes

3a*/a® + 3/a®> = 8ap . (4.12)

Thus with a(¢) chosen in accordance with (4.8), the equa-
tions of motion and the Haniiltonian constraint assume their
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continuum forms, Egs. (4.1) and (4.2), respectively, as
claimed.

While the time dependence of the metric is given by the
continuum equations, its form on the initial hypersurface is
determined by Eq. (4.8), which can be solved to give the six
independent edge lengths in terms of a(7).

B. Examples of spherical spaces

A virtue of 3 + 1 Regge calculus is the ease with which
one can treat space-times whose spatial topology is nontri-
vial. In this section we present explicit solutions to the 3 + 1
equations on compact spaces with topologies of the form S 3/
H, where H is a subgroup of SU(2) actingon S > =~SU(2) by
left multiplication. We look first at the quaternion space S 3/
Q, where Q is the eight-element quaternion subgroup of
SU2), {+1, t+io,, tio, +ioc,}. We then consider
the lens spaces L(p,1) =.§ 3/Zp. Regarded as a sequence of
tilings of S, they have the property that as p— o, the se-
quence approaches the continuum limit in one spatial direc-
tion: piecewise-flat curves parallel to an equator become
smooth, although the poles remain singular.

Given a finite (order n) subgroup H of SO(4) that acts
freely on S 2, one can partition S > into 7 congruent cells (not
tetrahedra) intersecting only at their boundaries, such that
the orbit of any cell is the set of all  cells. Then S 3/H can be
constructed from a cell by identifying pairs of faces, and a
tiling of any cell by m tetrahedra provides a tiling of S > by nm
tetrahedra.

In particular, the quaternion space S3/Q can be ob-
tained by identifying opposite faces of a cube after a rotation
by 90°, as shown in Fig. 2(a).>® Figure 2(b) illustrates a
simplicial decomposition of S */Q chosen to respect the iden-
tification of Fig. 2(a). Within the Regge framework, the
topology of the space S3/Q is described simply by stating
which edges are to be identified; its geometry is then fixed as
usual by its edge lengths, where identified edges are of course
assigned the same length.

For the smooth metric on the quaternion space induced
by that on S 3, the symmetries of the cube are isometries. In
the simplicial case, one expects edge lengths to share the
cube’s symmetry: that is, a solution with congruent tetrahe-

P s
(@) * @
Q e P
Q [J
P Q

dra to the 3 + 1 equations (4.1), (4.2), and (4.8) should
satisfy

loz = 103» 112 = 113 .

As noted above, the G?? = 0 equations, (4.6), imply that the
quantity
q.:=cVg,/6, (4.13)

has the same value for each edge /;. From Egs. (3.5) and
(3.6), together with the fact that edges /,, and /,, each be-
long to four cells, we have
_ 4vg",,

2r —4sin~'[(3/2) (Ip,V /A,A45) ]

901 (4.14)

and

_ 4vg'l,,

C 2 —4sin~'[(3/2) (1,,V /Ay A1

where 4, is the area of the face opposite vertex /. Similarly,

since edges /,, and /,, each belong to six cells, we have

- 6Vg%ly,

T 2r—6sin~'[(3/2) I,V /4, 43)1
6Vg>ly

27 — 6sin"[(3/2)(L,,V /4p4,)]

The ly; and /,; equations are identical to those for /y, and /,,
by the cubic symmetry. The form of the four equations
(4.14)—(4.17) suggests an additional symmetry

(4.15)

912

902 (4.16)

(4.17)

g3 =

Ly=Ilp=Ils=x, ly=1,=Il,=Jax. (4.18)
When these relations hold, we have
A0=A2 =A3, (4.19)

and the equality of the g, is reduced to the single relation
901/902=1. (4.20)

That is, from (4.18) there are only two independent edge
lengths. Their ratio « is time independent and determined by
Eq. (4.20); their magnitude is then given in terms of the
length a(¢) by any component of Eq. (4.8). From Eq. (2.23)
for g°' (and the analogous equation for g%%), we find

g%/ =2a—1, (4.21)

(b)

3 2

FIG. 2. (a) The quaternion space S */Qis constructed by identifying opposite faces of a cube after a relative rotation by 90°. Edges labeled by the same number
of hash marks (and vertices labeled by the same numeral) are thereby identified. (b) Six of the 24 tetrahedron in our simplicial decomposition of §>/Q. The
remaining tetrahedra are implied by cubic symmetry.
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while Eqgs. (2.18) and (2.19) imply

Ay = (x/4)(4a — )12, 4, = (3/4)x,
and

V=4x*2(3a —1)"/2. (4.23)

When length, area, volume, and components of the contra-
variant metric are expressed in terms of @ and x by Egs.
(4.18) and (4.21)-(4.23), Eq. (4.20) becomes

2r—4sin”'[2V3e”—a/(4a—1)] 3Qe-1)_,
27— 6sin™'[2{3a — 1/{3(4a — 1) ] 2Ja

(4.22)

(4.24)
There is a unique real solution for a, namely
a=0.5641, (4.25a)

and Eqs. (3.5) and (3.6) then give as the independent deficit
angles

By, = 23.4°, 65y = 6.02°. (4.25b)

To compare the simplicial geometry with a continuum
solution, one can choose as the comparison smooth space-
time the Friedmann solution with the same time depen-
dence, so that the difference is entirely in the spatial geome-
try. That is, by the theorem of Sec. IV A, there is a smooth
solution with the same density p(¢); and for that solution the
radius a(¢) of the three-sphere (27%a° is the volume V) is the
simplicial length a(¢) of Eq. (4.8). The continuum metric
restricted to the spherical space S */Q makes each edge into a
geodesic. Here /,, and /;, are, respectively, } and § the cir-
cumference of S, and their squared ratio is

@ooom = 0.5625 , (4.26)

only 0.3% larger than its value for the simplicial manifold.
The volumes do not agree to the same accuracy,

Voo / Vsimpticiar = 1.07 , (4.27)

but from the Hamiltonian constraint (4.7), the average cur-
vatures are identical

Rooth = Riimpiicial E’l; J- dVR, (4.28)
when one compares solutions with the same density.

This accuracy is consistent with that obtained in pre-
vious work, where S is approximated by one of the three
complexes of equilateral tetrahedra.®''* These have
¢g = 3,4, or 5 cells sharing an edge, and a total number of
cells N=35, 16, or 600, respectively. Because each cell is
equilateral, the consistency conditions implied by Eq. (4.8)
are automatically satisfied. The three-geometry is deter-
mined by the single deficit angle = 27 — ¢, cos™'(}), and
Eq. (4.8) then implies

@ = (\2/24) (¢ /0)12,

where / is the edge length. Again the smooth Friedmann
universe with the same density has radius a¢(z) and a scalar
curvature identical with the average simplicial scalar curva-
ture. The difference between the simplicial and smooth
three-geometry is measured by

(4.29)
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(@) (b)

7

FIG. 3. (a) The lens space L(6,1) is constructed from a 12-sided polyhe-
dron by identifying each upper face with a corresponding lower face as
shown. (b) Adding the vertical edge /,; decomposes the polyhedron into six
congruent simplices. The vertices of one of these are labeled.

Vunooth
Vuimplicial 172

1/241/4 3/2
_3n N(—e—) — 1.67,1.32,1.030,

CE
(4.30)

respectively, for the equilateral complexes with 5, 16, and
600 cells. If one views the quaternion space above as a de-
composition of the three-sphere into 24 X 8 = 192 cells, its
accuracy, measured by Eq. (4.27), is, as expected, between
that of the 16-cell and 600-cell solutions.

Let us turn now to the family of lens spaces L (p,1) ob-
tained by identifying the upper and lower hemispheres of the
surface of a ball after a relative rotation by 27/p. Figure 3(a)
illustrates the identification and Fig. 3(b) shows the simpli-
cial decomposition we have used. Edges ly,, oy, 1,3, and /5,
each share four tetrahedral cells, while edges /,; and /,, each
share p cells. As in the previous example, we consider a
space-time filled with dust of constant density. If we set

ln=lp=ls=1; (4.31a)
and
(4.31b)

the equations are symmetric under the simultaneous re-
placements

0erl, 263. (4.32)

Consistency of the G ¥ equations (4.6) then determines the
ratio

103 =112’

a=ly/lps (4.33)
via the equation
901/903 =1, (4.34)

where g, has the same form (4.14) it assumed for the qua-

ternion space, while g,; is given by
pVe®%ly .

27 —psin~'(3l;V /4,4,)

Proceeding as in the previous example, we obtain from Eq.

(4.34) the condition

b _ 2r—psin_'[(a—/(@=-D]* _ a-—}

O, 27 —4sin-[at@a—4)/(@—DI'2 L a?
(4.36)

(4.35)

9oz =
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We are interested here in the limiting case where the
number of cells becomes infinite. Then the lengths /y; = /,,
shrink to zero (while the other lengths remain finite), and
one expects the space to become smooth along the /,; and /,,
directions: the deficit angle 6,, associated with the finite
edges should vanish in this quasicontinuum limit. As p— «,
a— o, and the angles 6,, and 6,; assume the asymptotic
form

b=a~'+0(a™?), (4.37a)

Bps =27 — pa— V2 + O(a™%?), (4.37b)
Eq. (4.36) then yields the asymptotic solution

a =p*/7* + O(p) (4.38)

and for large p, 6,, — 7, while, as expected, 8;,—0.

C. The momentum constraint for congruent cells

From Eq. (3.13), the momentum constraint for a cell C
has the form

Zp ACD

where v° is any constant vector on *C. If the cells of *C are
congruent and the momentum tensor p°® respects the con-
gruence C— D, we have

(4.39)

P =pp " =p, (4.40)
where i}, is the vertex of D corresponding to vertex i of C.

Equation (4.39) may then be written in the following form:

kk
2 pz Uk =0 ,
k A k)

where the indices refer to vertices of cell C and 4, is the
area of the face opposite vertex k of C.

Proof: If the face CN D is opposite vertex k (k, of D and
k¢ of C), then

AP= —AP= 3V &
and from Eq. (2.44) we obtain the relation

v, =V, +n,Dz(n’° ),

(4.41)

1872

w0’
between the components of v along the affine bases of C and
D. The constraint then takes the form

=v,_— 6" k (no sum)

kk

1872 S 2,
; A(k)2
(4.42)

0=2pr0"> v, AP =(—3V(—
D

where we have used the relation X, p™* = 0.
Equivalently, since =, v* = 0, and (4.42) holds for all v,
the momentum constraint is equivalent to the three relations

(4.43)

The assumption of congruent cells is similar to assum-
ing homogeneity in the continuum theory. In the latter case,
additional symmetries, implying isotropy, must be imposed
to ensure uniform expansion. Here, although there is no ex-
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act isotropy, a similar result holds: A complex built from
congruent cells will generically have six independent edge
lengths—all edge lengths of one cell can be freely chosen. By
setting pairs of edges equal, one restricts the geometry, and if
enough edges are fixed in this way the momentum constraint
will determine the expansion rate of every edge in terms of a
single parameter. When this is done, regardless of which
edges are set equal, the momentum constraint always implies
uniform expansion—the same logarithmic time derivative
dlog 1 /dt for each edge.
For example, suppose in Fig. 2, one sets

lya=1ls=p. (4.44)

For congruent cells (and zero shift) the conjugate momen-
tum has the form

= (V/8)(g"*g" — gg")s,, . (4.45)

Then using Eq. (2.7), we find two independent momentum
constraints,

101 = 123§u, 102 = 10351),

Pll pOO
A——A—-—O=>(v—y)u+(4y—u)v—(4v-u)y 0

1 0

(4.46)

and
p22 pOO
YRR —0=>(y—v)(u + yu — vu — 2§° +2vy)—

2 ]

— (U 4+ 2% — 2% + yu — Suv)y
+(—u+v—y)o=0 (4.47)
Eliminating v between Eqs. (4.46) and (4.47), we obtain

-2 (4.48)
y u

Equations (4.48) and (4.47) then imply uniform expansion
v_r_% (4.49)
v y u

We have proved the same result on a case by case basis for the
various other possible distinct ways of equating enough edge
lengths that the momentum constraint determines the frac-
tional expansion of each independent length. Although in
every case the constraint implies uniform expansion, this
feature is not apparent from its original form (4.41), and we
are aware of no simple, general proof.

V. COMMENTS ON MINISUPERSPACE QUANTIZATION

As emphasized by Kuchar,* the Einstein field equa-
tions are closely analogous to the equations of motion for a
relativistic particle moving in a curved (infinite-dimension-
al) space with indefinite metric and a time-dependent poten-
tial. The analogy is drawn by parametrizing the particle’s
time—introducing an arbitrary time coordinate 7—and not-
ing that

dr

dt
plays the role of the lapse. In the 3 + 1 Regge theory, the
analogy is exact for the case of congruent cells. When one
deparametrizes the theory by solving the Hamiltonian con-
straint for the lapse,®® the action is that of a relativistic parti-
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cle moving in a six-dimensional curved space-time (signa-
ture — + + + + + ), and the particle is free. As in the
continuum case, there is a timelike hypersurface-orthogonal
conformal Killing vector.

When all cells are congruent the shift can be set to zero,
and from Eqs. (3.24) and (3.27) the Lagrangian takes the
form

6.l 1
L=2NY — +—G“5,,,

2:’ c, N
where we have removed an overall factor, dividing by the
total number of edges. Here ¢, is as usual the number of cells
sharing the ¢th edge, the sum is over the six edges of a single
cell, and the metric G~ is given by

(5.1)

1 82 V2
G* = —— 5.2
4V Js, 9, (5.2)
The single Hamiltonian constraint,
2 2 - L G55, (5.3)
has the 1mmed1ate solution
N= ] (5.4)
[ (2, 0,11,1/0). )

Using Eq. (5.4) to eliminate the lapse N, we obtain the un-
constrained Lagrangian

L=[G*"35]"?, (5.5)
where
0,1, ( 9,11,1) 1 3*p?
=8 G*= -2 — .
; 5,‘1" ¢, (V ds, 3SK)
(5.6)

Because the free-particle action is invariant under a repara-
metrization of time, the Hamiltonian constraint reappears in

the form
G P —1=0 (5.7)

or

=0, (5.7b)

equivalent to Eq. (3.47) specialized to congruent cells. The
signature of the metric G can be found by looking at the
matrix

a2

Js, s,
in the special case when all lengths are equal. The eigenval-

ues of (5.8) havesigns — + + + + 4, and its determi-
nant is proportional to ¥*

det||V*]| = —2-193-8p4 (5.9)

Since the determinant is negative definite, the signature will
not change under changes in the edge lengths, as long as the
triangle inequalities are obeyed. Thus when the triangle in-
equalities are obeyed (and space is not exactly flat), G has
signature — 4+ + + + + as well.

Because the squared volume is a polynomial cubic in the
squared edge lengths, under a uniform expansion

VLK= —

(5.8)
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s, —As, , (5.10)

the metric G changes by a conformal factor,
$:6G*(s) =4 72G“(s) .

The vector generating this expansion,

£,(s)=s,,

is thus a conformal Killing vector, with

(5.11)

(5.12)

It is timelike, because ¥2 cubic in the squared edge lengths
implies
— V55, = —6V2. (5.13)

In attempting to quantize this minisuperspace theory,
one faces two of the principal difficulties encountered in the
canonical approach to the continuum theory: The curvature
is not bounded below, and the metric G has a conformal
symmetry, but no true Killing vector. If one tries to exploit
the fact that the Lagrangian (5.5) describes a free particle
with unit rest mass, moving in a curved space-time, one en-
counters the “third quantization” problem*: because the
“particle” is not massless (equivalently, because the super-
metric and the curvature have different conformal weights)
a Klein—-Gordon quantization will involve either an indefin-
ite inner product or particle production, and one does not
know how to interpret the creation of “particles” on super-
space.

An alternative, Schrodinger-like, quantization (like
that used by Blyth and Isham®®) is suggested by the fact that
the conformal Killing vector is hypersurface orthogonal. If
one chooses as a timelike variable the volume ¥, the five
remaining degrees of freedom are the independent edge
lengths of a unit-volume tetrahedron, and the restriction of
the metric G, to this five-dimensional space is positive defi-
nite. Edge lengths S'* of a unit-volume cell are defined by

St=y 23, (5.14)

Because only five lengths are independent, the conjugate
momenta

m=9L (5.15)

as.

are related by
S =0. (5.16)

Then the Hamiltonian constraint (5.7) has the form

2 Z— + V(II")2

l

+ L y-esg, =0
(5.17)

or

v 2 -3 -1 2
n"=H= —AG, I~ — 0.l .
[ 3 ) ]
(5 18)
This suggests the Schrodinger equation
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o 0P
Hy=i v’ (5.19)
where G, IT'T1" is replaced by the covariant Laplacian of the
metric G, restricted to the five-space.

However, the integrated curvature at fixed volume
ranges from — oo t0 0, even if the triangle inequalities are
imposed: Tetrahedra that are either nearly flat or are long
and thin can have arbitrarily large integrated curvatures
(2 (61 /c)) for bounded volume. Thus the operator H will not
in general be Hermitian. The Schrddinger equation (5.19)
does make sense on the subspace of state vectors ¢ with sup-
port on edge lengths for which Z(8! /c) is nonpositive.

For the complementary subspace of state vectors with
support on edge lengths for which the integrated curvature is
positive, one can obtain a Hermitian Hamiltonian by identi-
fying IT" as the timelike coordinate and solving the con-
straint (5.5) for V. But the formalism is clumsy, because the
equation is a fifth-order polynomial in ¥, and the Hamilto-
nian is thus not available in closed form.

Finally, we mention the general situation where the cells
are not congruent. Here the momentum constraint is not
automatically satisfied, but we shall set the lapse to zero by
fiat. The Hamiltonian constraint on each cell can then be
solved as above,

1G S35,
Zrecbili/c, ’
and the Lagrangian becomes a sum of free-particle Lagran-
gians of the form (5.5)

L=2C: [G5,5.]2,

in which each coordinate s occurs as a coordinate of more
than one “particle.” The vector £, of Eq. (5.11) is here a
conformal Killing vector of each metric G¢.

(5.20)

C

(5.21)
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An example from a perfect fluid FRW space-time is presented to show that a conformal
Killing vector (CKV) need not map fluid flow lines into fluid flow lines. Kinematic properties
of the Lie derivative along a CKV of timelike and spacelike unit vectors are derived and
applied to the fluid unit four-velocity vector. Dynamic properties of special conformal Killing
vectors (SCKYV) in a fluid with anisotropic pressure and vanishing energy flux are obtained
using Einstein’s field equations. It is shown that a SCKV maps both fluid flow lines and
integral curves of n” into themselves, where n° is the unit spacelike vector of anisotropy. The
relation between the anisotropic pressure components and the energy density is considered. By
means of an example from a radiationlike viscous fluid FRW space-time it is shown that the
dynamic results depend crucially on the vanishing of the energy flux vector. The extension of
the dynamic results to a fluid with arbitrary stress tensor and zero energy flux vector is

examined.

1. INTRODUCTION

The study of conformal Killing vectors (CKV) in fluid
space-times has recently attracted some interest. In this
paper we will examine kinematic and dynamic properties of
anisotropic fluids that admit a conformal motion. Unlike the
kinematic properties, which are largely independent of the
physical nature of the fluid, the dynamic properties depend
on the kind of fluid through Einstein’s field equations. We
consider in detail fluids with anisotropic pressure and van-
ishing energy flux. The stress tensor has a dynamically de-
fined preferred direction with symmetry in the orthogonal
two-plane. They include as a special case perfect fluids in
which the pressure is isotropic. We also examine the general-
ization of the results to anisotropic fluids with arbitrary
stress tensor.

Suppose a fluid space-time admits a CKV £ %

c'ggé‘gab = 2¢gab ’ (11)

where .Z , stands for the Lie derivative along & “and #(x°) is
the conformal factor. We denote by #“ the unit four-velocity
vector of the fluid. In Sec. IT we will establish the kinematic
result

Leut = —u® +1°, (1.2)
where v is some vector orthogonal to 4°. Now in general v°
will be nonzero: £ © will not in general map integral curves of
u° into integral curves of #° or equivalently & “ will not map
fluid flow lines into fluid flow lines. This can be demonstrat-
ed by the following example. Consider a perfect fluid Fried-
mann-Robertson-Walker (FRW) space-time with k =0,
which in conformal coordinates has metric

ds’ = R*(9)( — dn* + dx* + dy? + dz*)
and fluid four-velocity

(1.3)
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u=R"'4,. (1.4)
The vector
E=7d,+x9, (1.5)

isa CKV (see Ref. 3), and
ZLyu=[§ul=x(R~™"),d, —R7'9,%# —tu.
(1.6)
This counterexample shows that the statement in the
literature’ that the identity

L= —gut (1.7)

follows from symmetry for a CKV & “is not valid in general.
Herrera et al.! based their kinematic derivation of (1.7) on
the equation

Ledx*=0. (1.8)
Now there exists a close relationship between (1.7) and the
projection of (1.8) onto the rest space of u°. For, since
dx® = u® dr, where 7 denotes proper time, we have

Ledx"=u' L dr+dr Loul. (1.9)

But (dr)’= —ds*= —g,, dx"dx® and therefore using
also (1.1),

Ledr=ydr—u, L, dx". (1.10)
Substituting from (1.10) into (1.9) gives

hy Lpdx® = (Lo u® + pu) dr; (1.11)
thus

Leuw'= —pu"Shy L dx*=0. (1.12a,b)

Since (1.12a) is not necessarily satisfied by a CKV £ “ then
neither is (1.12b) and therefore the stronger condition (1.8)
need not hold for a CKV.
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The spacelike vector v* in (1.2) may be expressed in
terms of the fluid vorticity tensor »® and this leads to kine-
matic conditions for (1.7) to be satisfied. As a particular
case of a general kinematic expression for v° established in
Sec. II we find that when £,4° =0,

v = 207, . (1.13)

If the fluid is irrotatiorial then (1.7) is satisfied by any CKV
£ ° orthogonal to u® while in a rotational fluid, (1.7) is satis-
fied by a CKV £ “ orthogonal to #° if and only if £ “ is parallel
to the local fluid vorticity vector w®.

By introducing dynamics through the Einstein field
equations we show that (1.7) may be satisfied in an aniso-
tropic fluid if the energy flux vector ¢g“ vanishes and £ “ is a
special conformal Killing vector (SCKV). A SCKYV is de-
fined by (1.1) and the condition #.,, = 0 and includes ho-
mothetic motions as a particular case. We also show with the
aid of Einstein’s field equations that the unit spacelike vector
of anisotropy #* in a fluid with anisotropic pressure satisfies

Len= —yn°, (1.14)

if £ “is a SCKV. Equation (1.14) is not true in general for a
CKV.

Cahill and Taub* showed that spherically symmetric
perfect fluid solutions admitting a homothetic motion repre-
sent the relativistic generalization of the self-similar solu-
tions of classical hydrodynamics—and are thus important
for the study of explosions and shock waves. [In fact Cahill
and Taub pointed to the conditional nature of (1.7), when
they stated that it followed from the transformation proper-
ty of the Einstein tensor and from the perfect fluid form of
the field source (see p. 7, Ref. 4).] Cahill and Taub used the
physically motivated self-similar transformations to arrive
at a homothetic KV that is isotropic (invariant under the
rotational KV’s), but neither orthogonal nor parallel to #°.
In a recent series of papers,” Herrera and Ponce de Ledn
have found exact spherically symmetric solutions including
anisotropic fluids, by assuming the existence of an isotropic
CKYV £° orthogonal to #°. No motivation is given for the
condition £ “u, = 0, but it is clearly the simplest case allow-
ing for a proper CKV and leading to nonstatic exact solu-
tions; in particular, (1.7) holds because £ “u, = 0 and the
fluid is irrotational. Geometrically, their assumptions
amount to assuming the existence of an isotropic intrinsic
CKYV in the surfaces t = const (see Sec. II). This forces the
metric to be isotropically conformal to a spatially homogen-
eous metric (a special Kantowski-Sachs metric).

The paper may be outlined as follows. In Sec. II kine-
matic results for the Lie derivative along a CKV §° of the
timelike and spacelike unit vectors #° and n° are derived. The
special case in which £, #® = 0 is considered and the geomet-
rical and physical interpretation of (1.7) is discussed. The
fluid energy-momentum tensor is considered in Sec. III. For
a fluid with anisotropic pressure the pressure parallel to the
preferred direction n%, p;, is different from the pressure per-
pendicular ton®, p, ; whenp, = p, and the energy flux vector
¢° vanishes the fluid reduces to a perfect fluid. Dynamic re-
sults for a fluid with anisotropic pressure and ¢° = 0 are de-
rived in Sec. IV. The Lie derivative of Einstein’s field equa-
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tions is decomposed with respect to #* and n°. Our approach
is different from that of Herrara et al.' who used (1.7) and
(1.14) to evaluate the Lie derivative of the field equations;
we use the Lie derivative of the field equations to prove that
(1.7) and (1.14) are satisfied in this fluid if £ “isa SCKV. In
Sec. V we generalize to include the cosmological constant
and a possible nonzero magnetic field two equations of state
obtained by Herrera ez al.'? relating p;, p,, and the total
energy density 1, which hold when £ # is a SCKV orthogonal
to u°. We also consider the case not discussed by Herrera er
al.' in which £ “ is parallel to #°. In Sec. VI a counterexample
is given to demonstrate that the dynamic results depend cri-
tically on the vanishing of the energy flux vector ¢°. The
extension of the dynamic results to a fluid with ¢° = 0 but
with arbitrary stress tensor is considered. Finally concluding
remarks are made in Sec. VIL

The notation and conventions of Ellis® for relativistic
fluid dynamics are followed throughout.

{l. LIE DERIVATIVES: KINEMATIC RESULTS

In this section we restrict discussion to kinematic re-
sults. In subsequent sections we introduce dynamics through
Einstein’s field equations and we examine how the kinematic
results derived here may be extended. Suppose that £%is a
CKYV satisfying (1.1); £° may be either timelike, nulil, or
spacelike. :

Consider first any unit vector X %, which may be either
timelike or spacelike. Then X, X * = ¢, wheree = — 1 ifX*°
is timelike and € = + 1if X “ is spacelike. We prove that

L X= —yYX°+7Y°, (2.1)

LeX, = +UX, +7Y,, 2.2)
for some vector Y ° satisfying X, Y “ = 0. In order to estab-
lish (2.1) we observe that we can always write

LeX=aX+ 7", (2.3)
for some scalar a and vector Y * satisfying X, Y“=0. To
obtain a we contract (2.3) with X :

a=e"'X, L. X°. 2.4)
But since X, X ° = € we have
X, L X°+X° L, X, =0, 2.5)

and hence by writing .%°, X, = %, (g, X ") and using (1.1)
we find that
X, L X°= —¢e. (2.6)

Thus @ = — 1, which establishes (2.1). Equation (2.2) fol-
lows directly from (2.1) with the aid of (1.1):

L X, =2X, + 8, L X" 2.7

We now apply the results (2.1) and (2.2) to the fluid
unit four-velocity vector #° and to any spacelike unit vector
n*u,u’= — 1,n,n* = <+ 1. Later n° will be identified with
the unit vector of anisotropy in the energy-momentum ten-
sor for a fluid with anisotropic pressure. We have

Leu'= —gu+17, (2.8)
Leu, =yu, +v,, 2.9)

where u,v° = 0 and
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(2.10)
(2.11)

fgna= _¢na+ma’
e'fg’na=¢’na +ma’

where n,m" = 0.
Identities (2.10) and (2.11) hold whether or not
n,u° = 0. It is easily verified that if n, #* = O then

v+ mu=0. (2.12)
For, since n,u® = 0 we have
n, Lew'+u Len, =0, (2.13)

and (2.12) is derived by substituting from (2.8) and (2.11)
into (2.13).
The spacelike vector v° can be expressed in terms of the
vorticity tensor »®. For we can always write £ = au®
+ B¢, where B,u’® =0and ¢ = — £,u° and therefore

g; u, =dua + ai‘a — a,bhg + zﬂbu[a;b 1 (2'14)

where an overhead dot denotes covariant differentiation
along a fluid particle world line.® But since

(2.15)

where 6, is the rate of expansion tensor and #, is the four-
acceleration vector, Eq. (2.14) becomes

Letg,=(a+iu, B, +au, —a,hl+20,B8°,
(2.16)
which may be rewritten in terms of £ ¢ instead of 5 ¢ as
Loug = (@ +uENu, +ai, —~a,hl +20,E°.

ua;b = eab + Wop — Uyl

(2.17)

It follows directly from (2.9) and (2.17) that
,/,___d;’_,"bgb’ (2.18)
v, =2w,E" +alu, + (Joga™") ,hl). (2.19)

Consider first the special case in which £,u°=0
= —a. Then (2.18) and (2.19) reduce to

p=i,°, (2.20a)
Dy = 20,,E°. (2.20b)

From (2.20a) it follows that a CKV & ¢ orthogonal to #° is
necessarily a Killing vector (KV) if £ ¢ is also orthogonal to
u° or if the flow is geodesic. From (2.20b) we have

Eut=0= 2L u' = —u’ + 20°%, , (2.21)
and therfore if £,u° = 0 then
Lou'= — U S0, =0. (2.22)

We note also that if £, 4° = 0 and the vorticity @ #0 then
o€, =0< £°is parallel to ° . (2.23)

If the fluid is irrotational then (1.7) is satisfied by any CKV
orthogonal to u°. If the fluid is rotational then (1.7) is satis-
fied by a CKV orthogonal to «° if and only if £ “ is parallel to
o°. Herrera et al.” proved that if £, u° = 0 then

Lett, =%u, 2 0,£°=0, (2.24)

but their conclusion that w,, £ ® = 0 for all CKV £ ° orthogo-
nal to #”is not valid because .Z’, u, = yu, is not necessarily
satisfied by a CKV orthogonal to u°.

Second, if £ @ is parallel to u°, then (1.7) is clearly satis-
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fied. Note that in this case (2.19) shows that & ! is an accel-
eration potential, while (2.15) contracted with 0*® shows
thato,, =0:

f=au"=u, = — (loga™") ,ht, o0,=0. (2.25)

We conclude this section by considering two geometri-
cal interpretations and a physical interpretation of (1.7).

Consider first the Lie derivative of the fluid projection
tensor h,, =g,, + u,4,. A simple calculation based on
(1.1) and (2.9) gives

L hyy =20h,, +2u,v,, , (2.26)
and therefore since v,u® =0,
Leuw'= —pu* & Ly hy, =200, . (2.27a,b)

Hence (2.27a) is satisfied if and only if £ ¢ is a conformal
motion of the fluid projection tensor 4,,. Now, in an irrota-
tional fluid the rest spaces orthogonal to #° at each point
form global spacelike hypersurfaces orthogonal to u° with
intrinsic metric tensor 4,,. If further £ ¢ is orthogonal to #*
then £ © lies in these hypersurfaces and when @ = 0 we know
from (2.21) that (2.27a) is satisfied. Thus (2.27b) also
holds and & “ must be an intrinsic CKV of the hypersurfaces.

An alternative geometrical interpretation of (1.7) is
that £ “ maps integral curves of «° into integral curves of #°.
When ##0, the mapping involves a rescaling of #° by a
change of parameter, but the family of integral curves of u*
as a whole is mapped into itself. Thus £° is a dynamical
symmetry of the fluid flow. One consequence of this dynami-
cal symmetry property is that new constants of the fluid mo-
tion may be generated from existing constants. For suppose
that f is a constant of the fluid motion; then

w=f, u’=f=0. (2.28)

It follows that § f=f,£ ° is also a constant of the fluid mo-
tion if (1.7) is satisfied:

wEf) =[wElf + &) =¢uf+E(uf)=0. (2.29)

A physical interpretation of (1.7) exists in terms of ma-
terial curves in the fluid. A material curve in a fluid is a curve
that consists at all times of the same fluid particles and there-
fore it moves with the fluid as the fluid evolves; it is some-
times said to be “frozen-in” to the fluid. The integral curves
of £ ? are therefore material curves if (1.7) is satisfied.

An important special case of material curves occurs
when £,u° = 0. If w#0 and (1.7) is satisfied then the CKV
£ “must be parallel to ®. The integral curves of £ “ are there-
fore vortex lines that will be material curves in the fluid. This
is a consequence of a symmetry property of the fiow and not
of the physical nature of the fluid. It can be shown conversely
thatif £ is a CKV orthogonal to #* and if the integral curves
of £ are material curves then they must be vortex lines if
@#0. For, the vector »®€, is orthognal to both 4° and £°
and it therefore follows from (2.21) that »®£, = 0 since
otherwise the integral curves of £ ¢ would not move with the
fluid. Thus £  must be parallel to »°.

lil. ENERGY-MOMENTUM TENSOR

Before applying Einstein’s field equations in Sec. IV we
consider here the fluid energy-momentum tensor.
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For a fluid with anisotropic pressure and vanishing en-
ergy flux the energy-momentum tensor may be written in the
form

Tab ='uuaub +p" nanb +plpab , (31)
where y is the total energy density of the fluid measured by
an observer with four-velocity #° »n®is a unit spacelike vector
orthogonal to u°,

nana= -+ 1 s (3.2)
P is the projection tensor onto the two-plane orthogonal to
u® and n°,

pabzgab+ uaub_nanb; (3‘3)
and p, andp, denote the pressure parallel and perpendicular
to n®, respectively. When p, = p,, (3.1) reduces to the ener-

gy-momentum tensor for a perfect fluid. In a local comoving
inertial system in which

nu®*=0;

u'=4683, n°=6%, g*°=diagl[ —-1,1,1,1], (3.4)
(3.1) becomes
T* = diag[.p) .00, ] - (3.5)

Fluids with anisotropic pressure have been studied ex-
tensively in the recent literature.">’'> We comment here
briefly on two examples of physical systems described by the
energy-momentum tensor (3.1).

First an energy-momentum tensor of the form (3.1) is
derived for a fluid consisting of two perfect fluid compo-
nents.®!! If the two perfect fluids are decoupled from each
other or interact weakly then anisotropic pressure may be
important in the time evolution of the fluid. In astrophysics
this situation could exist in neutron stars."!

Second, a strong magnetic field in a plasma in which the
particle collision density is low can cause the pressure along
and perpendicular to the magnetic field lines to be un-
equal'>'4; if the collision density is high an isotropic pressure
distribution would quickly evolve. For this system the total
energy-momentum tensor is

T = puu® + pyn°n® +p, p™ + Ty (3.6)
where n° = H°/H, H“ is the local magnetic field measured
by % and T, is the electromagnetic energy-momentum
tensor, which we will take to be the Minkowski tensor. If the

local electric field £ ¢ vanishes then the Minkowski tensor
for a pure magnetic field is'®

A A

T8 =7H2u"u" — —2—H2n"n" + —/;—Hzpab’ 3.7

where A is the magnetic permeability. On substituting from
(3.7) into (3.6) we obtain

T = guu® + pyn°n® + p, p*, (3.8)
where

B=p+ (A/2)H?, (3.9)

by =py— (A/2)H?, (3.10)

P =p, +(A/2)H?. (3.11)

From (3.10) we see that the magnetic field contributes a
tensile stress along the field line. The total energy-momen-
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tum tensor (3.8) takes the form (3.1) for a fluid with aniso-
tropic pressure.

The most general expression for the energy-momentum
tensor of a fluid is

T = puu® + ph® + 29°u® + 7, (3.12)
where p is the isotropic pressure, ¢° is the energy flux vector
relative to u“, and 7*° is the tracefree stress tensor or aniso-
tropic pressure tensor: g,u° =0, 7,,u*=0, 7°, = 0. The
energy-momentum tensor (3.1) can be written in the form
(3.12) with ¢° =0 and

p=12p, +py), (3.13)

= (p, —p )3 h* —nn. (3.14)
A stress tensor of the form (3.14) is also obtained for a colli-

sionfree gas in locally rotationally symmetric Bianchi space-
times, where n° is the local preferred direction.'®

IV. LIE DERIVATIVES: DYNAMIC RESULTS

The Lie derivative along a CKV £ of Einstein’s field
equations has been evaluated by Herrera et al.! If the cosmo-
logical constant A does not vanish then'”!®

ngab =2(D¢+A¢)gab _2¢;ab H (41)
where .
Oy = g*Y,qs - (4.2)

Because the energy-momentum tensor occurs in (4.1) the
dynamic results depend on the kind of fluid considered. In
this section we consider in detail a fluid with anisotropic
pressure and vanishing energy flux vector described by ener-
gy-momentum tensor (3.1). A magnetic field can be includ-
ed by replacing u, p;, and p, by @, p;, and p, defined by
(3.9)-(3.11). In Sec. VI we examine the extension of the
results to a fluid with a general energy-momentum tensor.
Suppose that 7, is given by (3.1). With the aid of (2.9)
for . ,u, and (2.11) for .£.n, a direct calculation yields

LTy =(Lepp+2pduu, + (Le py + 24p) Ingn,
+ (Lo py +2Up Pas + 2(1 + 1 YU,y
+2(py —pINGMy

which, when substituted into (4.1), gives

200(pay — uatty, +n,n,) — 29,

=[Lep+2¢u+A)]u,u,
+ [ ZLep + 24 — M) ]ran,
+ [Lep +2¢%(pL — A)] Pas
+2(u+p Uty +2(p —pdnam,, . (44)

By contracting (4.4) in turn with the tensors u°u®, u°n®,
u°p®, n°n®, np*, p*, and p“p*® — | pp* the following sev-
en equations are derived:

(4.3)

wu Lop+ 20+ A) = —2(0v + ¢ ,uu’) ,(4.5)
u'n® (1 +pIntv, =2y un’®, (4.6)
u'p®:  (u+p)p"v, =24, u’p™, (4.7)

nn® Lep, +2¢(p — A) =2(0¢ — Y,,n°n"), (4.8)
np*: (py —py P my = 20", (4.9)
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p*: Lepy +20(p, —A) =20¢ — ¢, r*, (4.10)
p“pbd - ipabp‘:d: ¢;ab pacpbd - i('ﬁ;ab Pab)Pw =0. (4' 1 l)
Since n,u° = 0, (2.12) applies and was used in the deriva-
tion of (4.6). Equations (4.5)~(4.11) are valid forany CKV
£

We now restrict consideration to special conformal
Killing vectors (SCKV) that satisfy the condition ¢.,, = 0.
For a SCKYV, (4.5)~(4.11) reduce to

Lep+29u+A)=0, (4.12)
ZLepy +2(py —A) =0, (4.13)
Lo +20(p, —A) =0, (4.14)
(u +P||)nbvb =0, (4.15)
(8 +p)p*v, =0, (4.16)
P, —p ) p*m, =0. (4.17)

Equations (4.12)-(4.14) were derived by Herrera e al.! for
A C(J);)nsider now (4.15) and (4.16) and assume that
u+p #0 and p+p #0. (4.18)
In the presence of a pure magnetic field the conditions corre-
sponding to (4.18) are, using (3.9)-(3.11),
B+py=p+p#0 and GZ+p, =p+p, +AH*#0.
(4.19)

If conditions (4.18) are satisfied then from (4.15) and

(4.16),
nv, =0, p® v, =0. (4.20)

Thus v” can at most be parallel to #* and since v, = 0 we

conclude that v*=0. Equations (2.8) and (2.9) reduce to
Lot = — g, (4.21)
Leu, =tu, . (4.22)
There remains only (4.17) to consider. If p, = p, then

the anisotropic fluid reduces to a perfect fluid and the ener-
gy-momentum tensor does not depend on n°. We therefore

suppose that
P —p) #0. (4.23)

If a pure magnetic field is present then the corresponding
condition is, from (3.10) and (3.11),

P, —DPy =P, —p + AH?#£0. (4.24)
Now, when (4.23) is satisfied, (4.17) gives

ptm, =0. (4.25)
We also have n°m, = 0 and further from (2.12)

ubm, = —n, . (4.26)

But if 4 + p; #0 it follows from (4.15) that n°», =0 and
therefore u®m, =0 by (4.26). Thus since p*m, =0,
n®m, =0, and u’m, =0 we conclude that m,=0 and
(2.10) and (2.11) reduce to

Len®= —yn®, (4.27)
Len, =yn, . (4.28)

Herrera et al.! used (4.22) and (4.28) to evaluate
.2’5 T,, and then derived the identities (4.12)—(4.14) (with
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A =0). We have shown that (4.12)-(4.14) do not require
(4.22) and (4.28) for their derivation. Equations (4.22) and
(4.28) cannot be obtained in general from kinematic consid-
erations alone. We have shown here that they are a conse-
quence of Einstein’s field equations for the particular case
when &% is a SCKV and the energy-momentum tensor has
the form (3.1). The derivation of (4.22) required also the
reasonable assumptions contained in (4.18), and (4.28) re-
quired p, #p, and u + p, #0.

The foregoing results apply to any SCKV & °. Consider
now a SCKYV £ ¢ orthogonal to #°. Then from (2.20b) the
kinematic result v* = 2w¢, holds and since v* = O in a fluid
with energy-momentum tensor (3.1) it follows that £ “ must
be parallel to w° if @#0: any SCKV orthogonal to «° ad-
mitted by a rotational fluid space-time with energy-momen-
tum tensor (3.1) must be parallel to ®. The integral curves
of & “ are vortex lines and since (4.21) is satisfied the vortex
lines are material lines in the fluid.

V. EQUATIONS OF STATE

In a fluid with anisotropic pressure (and vanishing ener-
gy flux vector) the special conformal Killing vector property
implies through the Einstein field equations relations
between p|, p, , and u. These have been investigated by Her-
rera et al.' for a SCKV parallel to »° and orthogonal to both
n®and u°. We generalize their results to include the cosmolo-
gical constant A and a nonzero magnetic field. We also con-
sider the case of a SCKYV parallel to #°, which was not dis-
cussed by Herrera et al.’

If £°is a CKYV satisfying (1.1) then

(R,), = —30¢. (5.1)

This result, which is purely kinematic, may be derived by
first showing with the aid of (1.1) and the identity

R®,=4R,g" (5.2)
that

(R%,),, =4 (L R+2¢R). (5.3)
Equations (5.1) follow on noting that'®

L.R= —2¢R — 60y (5.4)

Dynamics is introduced through Einstein’s field equations®

R =T%—} Tg" + Ag™, (5.5)
which, when substituted into (5.1), give

[(T®— (T —-2M)g"); ). = —30¢. (5.6)
For a SCKV, Oy = 0, and (5.6) reduces to

[(T® — (T -2A)g")E,].. =0. (5.7)

The conservation law (5.7) is the basis of the subsequent
analysis. For a fluid with energy-momentum tensor (3.8),

(Tt — (T — 2A)g™)E,
= (@ + 2B, + By — 2M)u" (%)
+4(E — By +2A)p™%,
+ 4@ — 2P, +B) +2M)n*(n%,) . (5.8)
Before studying a fluid with anisotropic pressure, con-
sider a perfect fluid for which 5, = p, = p. Suppose that £ *
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is a SCKV and consider first the case £,u4° = 0. (We have
seen that if @0, £ must be parallel to »®.) Then from
(5.8),

(T —WT—2A)g")5, =4 —p+2A)§°, (59)
which, when substituted into (5.7), gives

Lep—Lep+p—p+20)E°, =0 (5.10)
But from (1.1),

£ =4, (5.11)

and using also (4.12) and (4.13) [or (4.14)], which hold
for a SCKYV, (5.10) becomes

Y(u—p+2A)=0. (5.12)
Thus
either ¥y =0 or p=u+2A. (5.13)

In a perfect fluid space-time a SCKV orthogonal to #° is
necessarily a KV unless p = u + 2A. Second, if £  is parallel
to #° a similar calculation yields

either ¥ =0 or u+3p—2A=0. (5.14)

A SCKY parallel to 4° in a perfect fluid space-time is neces-
sarily a KV unless & + 3p — 2A = 0. Equations (5.13) and
(5.14) generalize to a SCKV result due to McIntosh!?° for
a homothetic vector and A = 0. The work of Collins*! on
shearfree perfect fluid solutions of Einstein’s equations with
vanishing magnetic Weyl tensor includes an example of
Mclntosh’s result for £, u* = 0 adjusted for A #0.

Consider now the extension of these results to a fluid
with anisotropic pressure and vanishing energy flux vector.
The case £ “u, = 0 depends on the relative orientation of & *
and n°. Two special cases can be considered: £ ¢ parallel to n*
and £ ° orthogonal to n° (and #”). Both cases were discussed
by Herrera et al.' and in each case, if @ #0, £ “ must be paral-
lel to w°.

First, suppose that £ ¢ is parallel to n°: £ = &n“. Then
since u%n, = 0 and p*®n, =0, (5.8) reduces to

(T — J(T—2A)g"), =4(ii — 2P, + By +2A)¢°,

(5.15)
which, when substituted into (5.7), gives
ZLep=2ZL¢p+ Ly
+ (E—2p, +p +2M)§°, =0. (5.16)

Using (4.12)~(4.14), which remain valid ifu, p, and p, are
replaced by iz, p, and p,, and (5.11), (5.16) simplifies to
Y@ —2p, +p; +2A)=0, (5.17)
and hence with the aid of (3.9)-(3.11) we find that
either y=0 or 2p, —p,=pu—AH>+2A. (5.18)

Second, suppose that & ©is orthogonal to n® and u®. Then
p*€, = £°and (5.8) becomes
(T — T —2A)g”), =4(E —p) +2M)E°.  (5.19)
On substituting (5.19) into (5.7) and proceeding as before
we obtain

V(i —p; +2A) =0, (5.20)
and hence
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cither y =0 or py=p+AH>+2A. (5.21)

No condition is placed on p, by a SCKV orthogonal to »n°.
When H = 0 = A, (5.18) and (5.21) reduce to the results of
Herrera et al.’ and, further, when py =P, =p, (5.13) is re-
gained.

Finally, suppose that £ is parallel to #°. Equation (5.8)
reduces to

(T — [T —2M)g™ ), = — 3(E + 2P, + B —2A)E°,

(5.22)
and proceeding as previously we find that
V(@ +2p, +p; —2A)=0; (5.23)
thus
either =0 or p+2p, +p +AH>—-2A=0.
(5.24)

When A = 0, the second alternative in (5.24) is in general
nonphysical. Equation (5.24) reduces to (5.14) when H =0

andp, =p, =p.

VI. GENERAL ENERGY-MOMENTUM TENSOR

The dynamic results of Secs. IV and V are based on the
energy-momentum tensor (3.1). There are two directions in
which (3.1) can be generalized: first by including a nonzero
energy flux vector ¢° and second by considering a general
stress tensor 7*° instead of the special form (3.14).

We first show by means of a counterexample that when
q“#0 the relation .7’ u” = — Yu” need no longer hold for a
SCKY £ “. Consider the radiationlike viscous fluid solution
in k = O FRW space-time found by Coley and Tupper.?* The
metric is given by (1.3) expressed in spherical polar coordi-
nates (7,6,4) and with R(%) = 1. The fluid four-velocity
vector is

u=(2/9)(cosh® g, +sinh®4,), (6.1)

where ®(7,7) is the hyperbolic tilt angle. Consider the trans-
lation KV

E=4d, =sinfcos¢d, + (1/r)(cos & cos ¢ g

—csc@singd,), (6.2)
which is a SCKV with ¢ = 0. Clearly,
ZLeu=[Eu]# —Yu=0. (6.3)

In this counterexample, the stress tensor 7 is of the form
(3.14). For,

7= — Aod®, (6.4)

where A is the coefficient of shear viscosity and o is the
fluid shear tensor, and since #° is isotropic (invariant under
the rotational Killing vectors), 0®® must be of the form

o =V3io(n,r)(§ R —n°n®), (6.5)
where n = (2/7)4, is the unit radial vector. This counterex-
ample demonstrates the difficulty of extending results of
Secs. IV and V to fluids with ¢°s£0 even if the stress tensor
retains the simple form (3.14).

Consider now an anisotropic fluid with arbitrary stress
tensor 7 (7°%u, =0, 7°, = 0) but with ¢° = 0. Suppose
that £ “is a SCKV. If (3.12) with ¢° = 0 is substituted into
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(4.1) with ¢, = 0 and (4.1) is contracted in turn with the
tensors u”u®, h°®, u°h %, and h 2h’ — § h °°h,,, then the fol-
lowing four equations are obtained:

uut: Lop+2p+A)=0, (6.6)
het: ZLep+29(p—A)=0, (6.7)
uhl: wat= —(u+pv,, (6.8)
hehy —3h®hy: Loy =2u ey, V", (6.9)

Equation (4.12) therefore remains valid for general 7°° if
q¢° =0, and (4.13) and (4.14) are replaced by (6.7). Using
(6.8), (6.9) becomes

Lelog = — 2 +puc vy . (6.10)

Since v, u* = 0, it follows from (6.10) that if z + p#0 and
¢° = 0 then for a SCKYV £°,

Leu'= - Lem, =0. (6.11)

We now give two examples of fluids in which v* must
vanish. First, consider fluids in which the three principal
stresses are compressive. This condition will be satisfied in
many astrophysical and cosmological situations since we do
not in general expect to find a fluid under tension. We have,
using (6.8) and ¢° =0,

T,°= —uv,. (6.12)

Thus v* is a spacelike (v,u#° = 0) eigenvector of 7,, with
eigenvalue — u that is negative. But if the three principal
stresses are compressive, the eigenvalues of 7, correspond-
ing to spacelike eigenvectors must be positive,”>* and there-
fore the only permissible solution to (6.12) is v* =0. Al-
though, for a fluid in equilibrium, thermodynamic
considerations indicate that the pressure must be positive,
negative pressure corresponding to a state of tension in the
fluid can exist in nonequilibrium metastable states; sponta-
neous contraction of the fluid can result in the formation of
cavities in the fluid and this can lead to possible negative
pressures. In the neighborhood of a critical point, for exam-
ple, a superheated liquid may have a negative pressure.?
Second, consider a relativistic gas. The energy-momen-

tum tensor describing the matter content of a relativistic gas
026,27

18
Tab=zf papbf"‘ﬂ,A s
A JP,

where summation is over all the species of the gas, p° is the
future-directed four-momentum of a particle of the gas, £, is
the distribution function, and 7, is the coordinate-indepen-
dent volume element on the mass shell P, for particles of
species A. From (6.13),

(6.13)

T,,,,v“vb=zf (Pt 7,30, (6.14)
T Jp,
while from (6.12),

T,v0° = — uv,v°<0. (6.15)

Since v° is spacelike, we conclude from (6.14) and (6.15)
that v° = 0 for a relativistic gas described by (6.13).

Finally we examine the possibility of extending the re-
sults of Sec. V on equations of state to an anisotropic fluid
with arbitrary 7, but ¢° = 0. When ¢° = 0 we have
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(T — (T —2A)g™ ),

=}(u + 3p — 2A)u(u%,)

+ (s —p+ 20)h ¢, + 7€, . (6.16)

We assume that £ “is a SCKYV so that (5.7) is satisfied. The
analysis is the same as in Sec. V with (6.6) and (6.7) taking
the place of (4.12)-(4.14).

Suppose first that £, #° = 0. In place of (5.12) for a per-
fect fluid we find that

Y(u—p+A)+7°€,=0. (6.17)
But from the momentum conservation equation with¢g* = 0,

w+p)t=—h=@p,+>,), (6.18)

and by contracting (6.18) with §, and using again (6.7) we
find that

7, =20(p — A) — (L +p)iE°. (6.19)
Substituting from (6.19) into (6.17) gives
w+p)(W—u,E%=0, (6.20)

which is identically satisfied for any x and p by virtue of
(2.20a).

Second, suppose that £“ is parallel to 4°. Then since
74" =0, 7, makes no contribution to (6.16) and there-
fore the perfect fluid result (5.14) is again obtained. The
statement (5.14) is therefore valid for a SCKV orthogonal to
u“in an anisotropic fluid with arbitrary =, provided ¢° = 0.
In particular it agrees with (5.24) for a fluid with anisotrop-
ic pressure since p is related to p; and p, through (3.13).

Vil. CONCLUDING REMARKS

The following argument may explain why a SCKV £¢
may be expected to satisfy the relation

Leu'= —yu’ (7.1)
in an anisotropic fluid with arbitrary 7°° and ¢° = 0. When
Y. =0, & ° satisfies'®

LR, =0, (7.2)

and therefore the Ricci tensor is invariant under the map-
ping £ °. (A SCKYV is a particular case of a Ricci collineation
vector.) Since the eigendirections are an invariant property
of a tensor we may expect that the Ricci eigendirections will
be invariant under the mapping £ °. Now from (3.2) with
¢° = 0 and Einstein’s equations (5.5) we have

Ruu®= — 4w +3p—2M)u, , (7.3)

and therefore #“ is a timelike eigendirection of R,,. Hence
we may expect that £ © will map the integral curves of #° into
themselves and therefore that

Lou = fu° (7.4)

for some scalar function f(x€). By contracting (7.4) with u,
and using (1.1) it can be verified that f= — ¢. For a fluid
with anisotropic pressure and vanishing energy flux de-
scribed by energy-momentum tensor (3.1), we also have

Ryn®=4(u+py —2p, +2A)n,, (7.5)

and therefore n° is a spacelike eigendirection of R, , which
may explain the relation
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Len'= —yn. (7.6)

As well as considering a general anisotropic fluid with
arbitrary stress tensor it was also of value to study the special
case of a fluid with anisotropic pressure described by stress
tensor (3.14). Relations for the anisotropy vector n* could
be developed and also the results derived depended on
weaker conditions. For example, although the assumption of
positive eigenvalues corresponding to spacelike eigenvectors
of T, is sufficient to derive (7.1) for arbitrary 7 it is not
necessary for the special case of a fluid with anisotropic pres-
sure. The spacelike eigenvectors of the energy-momentum
tensor (3.1) are n° and any vector that lies on the two-plane
orthogonal to u° and n°. The corresponding eigenvalues are
p, and p, . If a pure magnetic field is included, the eigenval-
ues are p; and p, and from (3.10) 7, may be negative if the
intensity of the magnetic field is sufficiently strong. To de-
rive (7.1) in a fluid with anisotropic pressure we required
only (4.18) [or (4.19) if H #0] and not p; >0 and p, >0
(orp, >0andp, >0).

Although the kinematic results derived here for a CKV
are valid in general, the dynamic results established for a
SCKYV depend on the energy-momentum tensor. These dy-
namic results depend crucially on the vanishing of the ener-
gy flux vector.
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Power asymptote singularities are discussed in the scale covariant theory of gravitation. Some
general results are derived. Special attention is paid to the Friedmann [A. Friedmann, Z. Phys.
10, 377 (1922)] and Kasner [E. Kasner, Am. J. Math. 43, 217 (1921)] models. A wider class
of behavior is exhibited and it is shown that the results obtained constitute a generalization of

the corresponding general relativistic results.

I. INTRODUCTION

All the orthogonal spatially homogeneous cosmologies
in general relativity with zero cosmological constant, perfect
fluid source, and the usual equation of state, which are ex-
panding at some instant, originate at a singularity at which
the energy density of the fluid diverges.! These cosmological
solutions have been classified on the basis of which power
asymptote they admit at the singularity.” An interesting
question that arises is how this classification changes in al-
ternative theories of gravity. In this article we investigate
power asymptote singularities in homogeneous cosmologies
in the scale covariant theory® and show that more diverse
behavior is possible as compared to general relativity. The
scale covariant theory is a viable alternative theory to gen-
eral relativity, which incorporates a variable gravitational
“constant.”*>

Ii. POWER ASYMPTOTES IN GENERAL RELATIVITY

In this section we review briefly the concepts needed to
describe the power asymptotes in general relativity. Further
details can be found in the beautiful paper by Wainwright.”
In its eigenframe, the expansion tensor 8, has the form

gab = diag(0101’02193)y

where the 8, @ = 1,2,3, are the eigenvalues associated with
the spacelike eigenvectors. Length scales /, are defined (up
to constant scale factors) by

1/, =6,

where the overhead dot denotes differentiation with respect
to ¢, t being the clock time along the fluid flow lines. As the
singularity at # = 0 is approached, the diagonal tetrad com-
ponents 8, are of the form

8, = (P,/D[1+01N], a=123, (2.1)

where the p, are constants that characterize the power as-
ymptote. The O(z") denotes higher-order terms that tend to
zero as a power of ¢.

In addition to the p,, the following finite limits are de-
fined: ~
. 3u . 307 . —3R*

= —_— = l —_— = 1
Bm = lim —5 B, = lim rE B. = lim YE
where u, 8, and o are the matter density, expansion, and
shear of the fluid, and R * is the curvature of the hypersur-

, (2.2)
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faces orthogonal to the fluid flow. Depending upon whether
B.. #0, B, #0, or B,.#0, the matter, shear, or curvature,
respectively, are dynamically significant near the singular-
ity. In view of the equation®

0*=0*+pu—1iR*, (2.3)
the constants in (2.2) satisfy the relation
Bm +B_g +Bc=l' (2'4)

Each of the constants 8,,, §;, and £ is non-negative. If 5,

= 1, then the matter is dynamically important near the sin-
gularity, B, = 1 means a shear-dominated singularity and
B. = lacurvature-dominated singularity. The following re-
lations hold:

B.=0 A B,#0=8,=0, (2.5)

B. =038, =0. (2.6)

The power asymptotes are classified according to the
dynamical significance of the matter, shear, and spatial cur-
vature. In addition various subcases are distingnished ac-
cording to the values of the p,, . In the case of the Friedmann®
cosmologies, we have

Bm =1; Bs=0, Bc=0! (2'7)

Pr=p,=p3=2/(3y), (2.8)

2y=pi+p+ps=pt +p; +p5 =437, (29
whereas in the case of the Kasner” model we have

B.=0 8,=1,B.=0, (2.10)
pr=1}+2(sina)/3, p, =1+ 2(sin(a + 27/3))/3,

ps =1+ 2sin(a +41/3))/3, —w/6<a<n/2,  (2.11)
2/y>pr+p+p3=p1 +p; +05 =1 (2.12)

ll. POWER ASYMPTOTES IN THE SCALE COVARIANT
THEORY

According to the scale covariant theory, Einstein’s field
equations are valid in gravitational units, which describe
macroscopic phenomena, whereas physical quantities are
measured in atomic units, which relate to microscopic phe-
nomena. The metric tensors in the two units are related by a
conformal transformation

8ab =¢2(t,4)(g,4 abs 0<¢< 0, (3.1)
where the subscript 4 denotes atomic units. We use the sym-
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bol ¢ instead of the more usual 3, as we reserve 8 for the
constants appearing in Sec. I1. The scale function ¢ is consid-
ered here to be a function only of time since we are concerned
only with homogeneous cosmologies. Tensors and equations
in the scale covariant theory are obtained from the corre-
sponding general relativistic ones by making the conformal
transformation (3.1). Covariant differentiation has to be re-
placed by co-covariant differentiation.>®

Hence we have®%!°

0=9¢""6, +38/9), (3:2)

Gu =¢ Gy, (3.3)

U=¢_10A’ (3.4)

t= f”¢(rA )dt,. (3.5)
0

In the scale covariant theory, allowance is made for a possi-
ble variation of the gravitational constant G ,.
Since

(IA )a/(IA )cx = (aA )a’
the (p, ), are obtained from the equation
(6 =[P/t ][1+00)], a=1,23. (3.7)

Motivated by the corresponding general relativistic defini-
tions in Sec. II, we define the following limits:

(3.6)

3 33
(Bo)n = lim L, (B, = lim =L,
‘ ;R* g 4 (3.8)
), = lim ———2,
B, = lim —

The functional forms that have been considered for ¢ as
being consistent with observations are'°

() = (/1) €= 11,1} (3.9)

where t,, € are constants. We shall consider — 1<e<]1,
which includes the above cases except for € = 1. This case
can be treated separately since it leads to logarithmic func-
tions [see Eq. (3.5)], but we shall not pursue this case
further in this article.

Furthermore, in the scale covariant theory it is assumed
that'"!? the gravitational constant varies as the universe of
time, viz.,

G, =By/t,, B,=const. (3.10)
From Eq. (2.3) we find that
R*=20%+2u—1393
which together with (3.2)-(3.4) lead to
R*=¢"7R%. (3.11)

From (2.2), (3.8), (3.9), and (3.11) we infer the following.

(i) B, =0=>(B,), =0. So a velocity-dominated sin-
gularity'>'* in gravitational units implies a velocity-domi-
nated singularity in atomic units. Furthermore, 8, >0
= (BA )s > 0.

(ii) B. = 0= (B4). =0and 8. >0 (B,). >0.

(iii) (B4); =0=(B,). =0.

(iv) B,, =0=(B,),» =0. If matter is dynamically
negligible in gravitational units, it is also dynamically negli-
gible in atomic units.
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(v)Flat three-spaces in gravitational units imply flat
three-spaces in atomic units.
(vi) The equation

Badm+ Ba)s=By). =1

does not hold in atomic units except for the case ¢ = 1, i.e,,
gravitational units.

IV. FRIEDMANN COSMOLOGIES IN THE SCALE
COVARIANT THEORY

The Friedmann-type equation for the Robertson-Walk-
er metric in the scale covariant theory is>

3 /1, +¢/$) +k/1Z — Gy —Ay =0.

3,10

(4.1)
Since
1) = (1) (14),
dt=¢(t)dt,, A=¢"2(1,)A, (1),
and using (3.3) we find that Eq. (4) becomes the familiar
general relativistic Friedmann equation
31— Gul* — Al = —3k.
The asymptotic behavior of this equation for small / or
equivalently for small # is well known's:
I=Cyg¥0n, 4.2)

Now small atomic times correspond to small gravitational
times, and we thus find by transforming back to atomic units
that the asymptotic behavior for small times in the scale co-
variant theory is given by

C, = const.

l, =Dy &t ¥C —2/6G D, = const. (4.3)

Although /, does not always tend to zero as ¢, -0, it is
easy to verify from the integral'® of the conservation equa-
tion

wa~1/3%2G),

and Egs. (3.10) and (4.3) that, for the range of values of €
considered, we always have a singularity as 7, -0, i.e., the
energy density diverges.

We may now state our results for Friedmann cosmolo-
gies in the scale covariant theory:

44)

1, if¢ =constand G, = const,
Badm = {O, otherwise;
(BA )s = (ﬂA )e = 0;
e+2(1—e)y
=@+ a2+ @a)s> @)+ (P4): + )3
=36+ 4e(l —€)/y +4(1 —€)*/(3%).

The last relation holds for ¥ = 1 and ¥ = § (the latter except
when € = — 1, in which case the inequality becomes an
equality).

V. KASNER MODEL IN THE SCALE COVARIANT
THEORY

Itis well known that in general relativity the shear varies
as

o?~t72, (5.1
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In atomic units, the shear varies as'®
o} =¢*(1,)0%. (5.2)

From relations (5.1), (5.2), (3.5), and (3.9), we find that
the shear in atomic units varies as

o4 ~t (5.3)
Further, the length scale in the Kasner model is given by'®

1 ~tV3+2e53, (5.4)
from which we can calculate 6,. Thus
(B.0), = lim (30*/6%) =1, (5.5)
10t

which is the same as the general relativistic result. From the
results of Sec. I1I, it follows that (8 ,)_. = 0 and, since the
Kasner model is empty, (8 ,),, =Osinceu, =0.

From the relation (5.4) we find that

@a1=A+(1—A)e€ 3A,=1+2sina,
(Pa)2=A+ (1= A€ 3A,=1+2sin(a + 27/3),
@a)s=As+ (1 — A)e€, 3A;,=1+2sin(a + 47/3).
Thus

(PA)1+(PA)2+(PA)3=1+2€,
and

(5.6)

P+ @)+ )i =1+26 (5.7)

From Egs. (5.6) and (5.7), we deduce that for O <e < 1 we
have

@1+ @)+ Pa)s> @)+ ()3 + (pg)3,
whereas for — 1<€ <0, we have

@)1+ P2+ (Pa)s<(py )} + (PA)g + (PA)g-

The equality only occurs for € =0, i.e., in gravitational
units.
Depending upon the value of €, it is possible to have

2/y8P 1+ (Pa)2+ P4)a.
For €#0, we have
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@+ @3+ @3>0

VI. CONCLUSION

The two models that we have discussed serve to illus-
trate the kind of diverse behavior that occurs in the scale
covariant theory as compared to general relativity. We no-
tice that for e = 0 (¢ = const) and G, = const, our results
reduce to the general relativistic results given earlier. Our
results thus represent a generalization of the corresponding
general relativistic results. We note further that in atomic
units it is possible to have (8 ,),, =0 even in nonempty
Friedmann models. This is not possible in nonempty Fried-
mann models in gravitational units.

Finally we remark that the value € = — } seems most
likely to fit observational results.'’” From our general results,
it is easy to work out the power asymptotes for this specific
value of €.
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The unboundedness of the gravitational partition function Z is formally established. First the

eff

Euclidean path integral representation for Z, in terms of the renormalized effective action ST,
is derived. Next it is shown that for “strong” fields, S ¥ is unbounded from below. The
possible influence of the space-time topology is taken into account.

i. INTRODUCTION

One of the most fundamental properties of a physical
system is its stability. In the classical case it usually means
the boundedness of the energy functional from below. In-
stead in the quantum case it should be understood as the
boundedness of a spectrum of the energy operator H (see
Ref. 1). Classical stability was established for gravity (pure
and with the matter fields) in the asymptotically flat case?
and in some other cases.’ Matter fields were assumed to sat-
isfy the dominant energy condition.* It is interesting and
important to examine the problem of to what extent the
known classical results may be valid in the quantum case.
However, we are not able to find spectral properties of the
energy operator for gravity directly, instead we have at our
disposal some other objects as the partition function Z and
the effective action S °* containing the information needed.

This paper is the first one of a series devoted to examin-
ing the quantum stability of gravity in different approaches.
We start our analysis from the investigation of the partition
function Z in the simplest pure gravitational case. We will
impose the “volume cutoff *’ and the boundary conditions by
restricting ourselves to closed manifolds, i.e., manifolds
without boundaries and compact. The theory will be taken in
the Euclidean version.

First we will write down the classical gravitational ac-
tion S, with the cosmological term A and perform the stan-
dard Faddeev-Popov procedure in order to obtain the effec-
tiveaction.S ¥, The partition function will gain the following
path integral representation:

Z=fe‘s°"dp,

where du is a properly defined measure. Unfortunately the
measure as well as some formal manipulations we will per-
form do not have a rigorous mathematical meaning; this sit-
uation is rather common in gravitation.

Next we will introduce a definition of the analytically
renormalized determinant to assure the existence of the ef-
fective action S . Following the method of Ref. 5 we will
rescale the fields to show the unboundedness of the partition
function Z (1.1) in the “strong” fields limit. Thus the un-
boundedness of the partition function is a result of scaling
properties of the renormalized effective action S <% .

(L.1)

li. THE PARTITION FUNCTION

The action in general relativity is usually written in the
form
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S, = — (u)—‘J’ (R —2A)g"?d*%, 2.1
where R is the curvature scalar, A is the cosmological
constant, g is the determinant of the metric g,,
=diag( + + + + ), and « is the Einstein gravitational
constant. We will consider only the so-called closed mani-
folds, i.e., compact without boundary term.® Let us notice
also that the cosmological term A damps contributions to
the path integral coming from large volumes.

We will quantize the theory by the covariant Faddeev-
Popov path-integral method.® We will treat the gravitational
field as a gauge theory with the diffeomorphism group
(Diff M %) acting as the gauge group. The diffeomorphism is
generated by the displacement of space-time points through
a contravariant vector field £#(x), i.e., x*—x* + £#(x).
Consequently, the effect of this transformation on g**(x)
takes the form
8g" = —Leg"=—£6"0, 8" +8%9, " +8"3, £,

(2.2)
where L is the Lie derivative.

According to the standard procedure we have to fix a
gauge and find the proper Faddeev-Popov term. We choose
the so-called degenerate harmonic gauge

d,(g'%g") =0. (2.3)

If we subject the gauge-fixing term (2.3) to the infinitesimal
gauge transformation (2.2) we will get the following ghost
contribution to the action:

Sep = — 4log det( — A), (2.4)

where A is the Laplace-Beltrami operator, i.e.,
A=g~'23,(g"*g" d,) (for the proof see Appendix A ). It
is important to stress that we are not working in any back-
ground field formalism but in the normal field one. Thus we
should not expect to get a truly covariant Faddeev—Popov
term. Nevertheless, we have succeeded in obtaining the co-
variant Laplace—Beltrami operator in the suitable chosen
gauge. The situation has no counterpart in the Yang-Mills
case. The choice (2.3) is an extremely convenient one be-
cause of the “covariant shape” of the Faddeev—Popov opera-
tor, viz. A (see Ref. 7).

The gauge-fixing term (2.3) is introduced into the the-
ory with the help of some Lagrange multipliers a,. We add
to the action the following gauge-fixing expression:

Sop = if a, d,(g"%g"")d*x. (2.5)
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Now we are ready to write down the whole effective
action S5 °F. Collecting the formulas (2.1), (2.4), and (2.5)
we have

ST =5, + Sep + Sor

= —(%)! f (R —2A)g" 2 d*x — 4 log det( — A)

+ ifa,, a3, (g"%g*")d *x. (2.6)
We are left only with the problem of finding an appropriate
gravitational functional measure, given in the following gen-
eral form:

D (g] =[[/8.s) [I 4(8"&"), 2.7

3y
where fis an unknown homogeneous function, i.e., f(#°g,5)
= w%f(g,p)- Thus we should determine the actual expres-
sion for /. Instead of doing so we will give two frequently
used variants. Namely, the canonical measure proposed by
Fradkin and Vilkovisky® is given by f(g,5) =8 %8 and
its homogeneity degree is a = — 14. On the other hand, the
scale-invariant measure is given in the form® f(g,z)
= g7 5/2, where the homogeneity degree isa = — 20. Thus
the entire homogeneity degrees of the measure D[g] (2.7)
are A = 6 in the former case and 4 = 0 in the latter. It will
appear in the sequel that for our purposes it suffices to guar-
antee the condition

A<S. (2.8)

Now we are ready to give the final form of the partition
function

Z=JD [g]Dae =57,
where § % is given by (2.6) and
Da=T1]1] (2m)~'da,.
x p

It is worth noting that the anomaly-free gravitational
measure recently given by Fujikawa'® does not fulfill the
restriction (2.8) and therefore this case will not be dealt with
in the paper.

lil. THE HEAT KERNEL REPRESENTATION OF THE
RENORMALIZED DETERMINANTS

As the further analysis indicates (viz. Sec. IV), our final
result crucially depends on the behavior of the log det( — A)
in the effective action S ¥ (2.6).

First of all, the log det( — A) must be properly defined.
We shall now derive an extremely convenient (for applica-
tions) heat kernel representation for the renormalized deter-
minants. Formally we may write ’

logdet H= ——f s
o S

where H is a non-negative operator (equal to — A in our
case) and 7'(s) = Tr e ~*¥. Unfortunately (3.1) is divergent
and must be renormalized. There are many known defini-
tions of the renormalized log det H, e.g., zeta function, di-

T(s), 3.1

2099 J. Math. Phys., Vol. 27, No. 12, December 1986

mensional, point splitting, etc.!! It seems that the zeta-func-
tion renormalization prescription is the most commonly
used one in the curved space calculations.'> However, in this
work we will adopt Seiler’s renormalization prescription'
because of its straightforward interpretation in terms of the
t’Hooft minimal subtractions in the Feynmann diagram lan-
guage. It is remarkable that our final result does not depend
on the definitions accepted as they differ by scale-invariant
terms only.

The heat kernel G(x,p;s) = {(x|e~*|y) satisfies the
equation

3,G(xy;s) + HG(x,p;s) =0,
where H is an elliptic second-order differential operator with
the initial condition G(x,y;0) = 8(x —y). The short-dis-
tance expansion (x is close to y) of the heat kernel was given
by DeWitt.'> We will be interested only in the trace version

of it. Thus we obtain the so-called Seeley expansion for small
s,

Tre~H=T(s) = 3 T,s? (3.2)
i=0

where the T; are the Seeley or the Hadamard—-Minakshisun-
daram-DeWitt (“Hamidew”) coefficients.>'* For mani-
folds with boundaries the expansion (3.2) needs additional
terms, abandoned here.'’

Below we will give the first three Seeley (“Hamidew”)
coefficients for H = — A that are the most important from
the renormalization point of view:

T,= (4m)~* f g7 d*, (3.32)
T, = (4r) 2 I%Rg”z d*, (3.3b)
1
T,= (47 -Zf(—RaﬁWR ,
2= (4m) 180 el
1 1
——_R*R ——R’) 1/2 g4, 3.3
180 X Rty ROJjgTdx (330

Generally speaking, we have two kinds of divergences in
(3.1): ultraviolet and infrared ones. The former originates
from integration for s—0 and the latter may appear from -
integration for s— 0. The occurrence of the ultraviolet di-
vergences results from the form of the Seeley expansion
(3.2). It is easy to see that the first three terms in (3.2) give
rise to divergences for s—0. The infrared divergences are
connected with zero modes NV of the operator H. Since A has
a discrete spectrum for a compact manifold'! we may rewrite -
T(s) as

;e_“"= D e 4+ N. (3.4)

n 2,70
Here N #0 gives rise to divergences in (3.1) for s—cc.

Definition: Let H be a non-negative elliptic differential
operator, H,, its free part, and 4 a constant associated with a
mass scale. Then the analytically renormalized determinant
is defined by the formula
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a+1

log det,z H = (a!)“f ds log(u’s) (i)
o ds

X{[T(s) — To(s)1s°}, (3.3)

where T(s) =Tre ", T,(s) =Tre %, and [T(s)
— T,(s) ]s® is smooth in s for some a.

Remarks: (1) T,(s) is coming from the normalization
of the functional measure.

(2) In our case, i.e., H = — A, it suffices toputa = 1.

We shall derive now the explicit functional form of the
log det,x H using the Seeley expansion.

Proposition 1: Let H be a non-negative elliptic second-
order differential operator, N and NV, be the numbers of zero
modes for H and H,, respectively, and C be the Euler con-
stant. Then

log det,x H
_ _J 95 [ T(s) — Tols) — Ty~ — Tpe~#*
o S

— (N=Ny)(1 —e#9)]
+(1+ O[T, — (N—-N,)l.

For the proof see Appendix B.

In the next section we will extensively use the following
proposition.

Proposition 2:

log det, g (pH) =log det,g H+ [T, — (N — Ny)llogp,
(3.6)

where peR | .
For the proof see Appendix C (see Ref. 16).

IV. SCALING

To find announced unboundedness of the gravitational
partition function Z we will have to rescale the fields in the
suitable way. The scaling differs from the one proposed in
Ref. 5 because it looks rather as a change of the variables in
the path integral and therefore is expected to give an equiva-
lent expression. We put

8y (X)—0°8,,, (X), 4.1
—(1/4)Aa” (X), (4.2)
where w is a real positive constant and 4 is an entire homo-
geneity degree of the measure D[g] (2.7). The former trans-
formation, i.e., (4.1), represents an ordinary conformal
transformation with a constant factor & and is the principal
one. The latter, i.e., (4.2), is an auxiliary transformation to
assure the formal invariance of the measure (2.7).

Equation (4.1) implies

R-o7°R, 4.3)

Ao A, (4.4)

By virtue of (4.1) and (4.3) we have the following scaling
property for the classical gravitational action S, (2.1):

a,(x)—w
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— (20! f (R —2A)g"? d*x—0*S, + 'S,
= — () " 'o? ng”z d*x

+ (h)“w4J2Ag‘/2d‘x. (4.5)
It is damped for a large value of w by the cosmological term
and tends to zero for small w.

Using (4.1) and (4.2) we can find the scaling property
for the gauge-fixing term S (2.5)

SGF—)a’z—(l/4)ASGF' (4.6)

It is bounded for small & unless the condition (2.8) is not
fulfilled.
From (4.4) and (3.6) it follows that

log det,g ( — A)
—log det,g (— A) + [T, — (N — Ny) llogw™2.
4.7
It is obvious that in the small @ limit [“strong” fields limit,

see (4.3)] the renormalized effective action S ¥ is dominat-
ed by the term

T, — (N —Np). (4.8)

We observe that the measure (2.7) is obviously formally
invariant under the transformations (4.1) and (4.2). Conse-
quently, the behavior of the partition function crucially de-
pends on the term (4.8). We see that the whole effect follows
in our approach from the renormalized Faddeev-Popov
term in small @ limit. Instead, in Hawking’s approach a gen-
eral conformal transformation is performed with a rapidly
varying factor w (inadmissible in our gauge-fixing choice) of
the classical action S, (see Ref. 5).

Now, we will examine the behavior of the expression
(4.8). It will be convenient to use the Gauss—Bonnet
theorem,!” which, in our closed four-dimensional case, bears
the following simple form:

x (M) = (327) 7!

Xf (R R ., — 4R ¥R,z + R*)g'* d*x,
(4.9)

where y (M) is the Euler number of a manifold M. The Euler
number y (M) is given by the alternate sum of the Betti
numbers B;,

4
x(M) =3 (—)B,
i=0

where B, = dim H'(M) and H'(M) is the cohomology
class. By virtue of the Poincaré lemma,"” B, = B, _; for
orientable manifolds. Consequently y(M) =2B,+ B,
— 2B,. If the manifold is simply connected, B,( = B;) =0
(see Ref. 14) so y (M) >2. For a connected manifold B, = 1.
Since we have

N=N,=3, (4.10)

for the Laplace-deRham (Laplace-Beltrami in our case)
operator on i-forms (O-forms, i.e., functions in our case) on
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closed manifolds, we may confine our attention to the term
T, only. :

By virtue of (4.9) and (4.10), the term (4.8) may be
reexpressed in the following manner:

Tz - (N‘—No)

1 1
7=t on+ L
2= 5o XM + 50

Xf (R aﬁRaﬁ + -;—R 2) g1/2 d“x.
It follows from the above considerations that T, is always
positive for simply connected manifolds independently on
the metric g,,; y(M)>2 and the second term in (4.11) is
evidently positive (7,3>2). Thus the gravitational partition
function is unbounded in the small & limit in this case. How-
ever, when nonsimply connected manifolds are taken into
account, the situation is less clear. In any case, 7, should be
positive for a sufficiently rapidly varying metric g,,,. So it
seems that the nonsimple topologies cannot improve the sit-
uation considerably.

We shall now present the main result. Assuming that
the measure (2.7) makes mathematical sense, we have the
following theorem.

Theorem: Let M * be an orientable closed simply con-
nected four-dimensional manifold and Z the partition func-
tion for gravity, Z 0. Then

Z = =+ 0. (4-12)

Proof: Using the scaling properties for the renormalized
effective action S, described above [ (4.5)-(4.7)] we ob-
tain

(4.11)

Z= JD (g]1Da exp(4T, log @2 — Sgp

— WS %S, — 'S, ).

Since T'>} for orientable closed simply connected manifolds
we have

Z>exp(4i5 log w‘z) fD [g]1Da
Xexp( —SFP _(L)Z—(IM)ASGF

—0*Sy — 0*S,) > + .
w—0

V. DISCUSSION

We have shown that there are some troubles with the
partition function for gravity Z to exist. Namely, it has ap-
peared that by the suitable rescaling of the fields we may
convert the functional integrand to an arbitrarily big expres-
sion. Actually, the indefiniteness is coming from the renor-
malized Faddeev—~Popov term in the degenerate harmonic
gauge. However, it is well known (in the Yang-Mills case)
that such gauges usually possess some drawbacks of the Gri-
bov ambiguity type. Therefore one may wonder whether
that is the case. As was stressed by Fradkin and Vilkovisky®
the degenerate harmonic gauge is the most suitable for non-
perturbative analysis in quantum gravity because of the “co-
variant shape” of the Faddeev—-Popov operator.
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It should be noticed that we do not perform any one-
loop approximation. As the classical gravitational action
lacks R 2-like terms, log det,x may be understood as a rede-
finition of the action rather than a conventional renormal-
ization of a coupling constant. Thus, our S is in some
sense classical and exact. )

Referring to the boundary conditions, we only mention

" that they should not affect the results in the essential way.

We must only add some surface terms to the Seeley (“Hami-
dew”) coefficients'® and to the action.

The only possible chance to improve the situation is the
restriction of the space-time topology. Unfortunately, al-
though it helps a little, it does not suffice.

It should be interesting to add to the action some matter
fields coupled (minimally or nonminimally, maybe in the
supersymmetric way) to gravity. As fermion and boson
fields enter the effective action with opposite signs, the result
may be radically changed. Roughly speaking, nongauge bo-
sons improve and fermions make the stability worse. Of
course, gauge fields introduce additional ghost fields that act
in the opposite direction. Thus the situation is more involved
and stability depends on topology, in the essential way,'® and
on the field content.

ACKNOWLEDGMENTS

I would like to thank Professor R. Raczka for many
helpful discussions and continuous help.

APPENDIX A: DERIVATION OF THE FADDEEV~-POPOV
TERM

We have
8= —£49, 8"+ 3,67+ 3,6
[see (2.2)] and
Sg=—£"0,8—283:6"
Denoting A ** = g'/%g"", we get
Sh# = — 3, (E*h™) + 3, (h*EY)
—dhHEY L R G, &R
In the degenerate harmonic gauge, i.e., d, h ** = 0, we obtain
9,6h* =3,(h"* 3, £").
The Faddeev—Popov formula now reads

féva,,,, 3, (h"*3,0%)d*x

- f 8°5,, 804" d*x,

where A is Laplace-Beltrami operator. We see that g'/*
should be absorbed in the Faddeev—Popov ghost fields in the
functional measure. It only causes a redefinition of the gravi-
tational sector in the functional measure.

APPENDIX B: PROOF OF PROPOSITION 1
Fora=1,

oo 2
log det,x H = f ds 1og (u%s) %; {LT(s) = Ty(s)]s}
(o]
(B1)
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has the following explicit representation:
log det,g H

= -I gs [T(s) — Ty(s) — Tys~ ! — The—#*
b s

— (N=Np) (1 —e=#¥)]
+ (1 +O)T,— (N-Nyp)], (B2)

where N and N, are the numbers of zero modes for H and H,,,
respectively, T(s) =Tr e =¥, To(s) =Tr e ~**, and Cis the
Euler constant.

Proof: Integrating twice by parts in (B1) we obtain

logdet,g H
=1og(u?*s){[T(s) — To()1s}|§

— [T — Tyl — f i’sf [T(s) — Ty(s)].
0

(B3)
By virtue of (3.4), we have, for A— + oo,
{[T(s) — To()1sY |son =N — N, (B4a)
[T(s) — To()1l|s_n =N—N,. (B4b)
Instead, by virtue of (3.2) and (3.3a), we have for
{[T(s) ~ To() 1sY |y e = T (B5a)
[T(s) — To() s me = Th€ ' + T (B5b)

Now we observe that

A
log(u?A) = gs (1—e **) —C,
o S

log(u’€) = —f -d—se"‘z’——C,
s

€
o0
e! =f s7%ds.
€

Inserting these expressions into (B5) and next (B4) and
(BS) into (B3) we obtain (B2).
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APPENDIX C: PROOF OF PROPOSITION 2

(ChH

where peR and p > 0.
Proof: By (Bl) we have

log det,, (pH)
o 2
=f ds log(u®s) a {[T(ps) — T,(ps)1s}.
o ds?

Now set s' = ps. Hence
log det, (pH)

=logdet,g H+logp {[T(s") — To(s") 1}
According to (B4a) and (B5a) we obtain (Cl).
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Path integral for second-derivative Lagrangian L =(x/2)¥%2 4 (m/2)x2

+ (k/2)x2—f(z)x(r)
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For the above second-derivative Euclidean Lagrangian, the quantum statistical probability
distribution (x,v, 7, |x,v,7,) that an orbit x(~) with initial position x, and velocity x, = v,
arrives at a final point x, and velocity x, = v, is calculated.

|. INTRODUCTION

The behavior of many physical systems cannot be un-
derstood without allowing for higher-gradient terms in the
field energy. In relativistic quantum field theory such terms
have not enjoyed much popularity, due to notorious difficul-
ties with positivity of either the energy or of the metric of the
quantum mechanical Hilbert space.' In statistical mechan-
ics, however, such terms are ubiquitous and impossible to
avoid. Some examples follow.

(1) Polymers on an intermediate distance scale are stiff
objects and their energy requires the inclusion of a bending
energy which involves the square of the second derivative,
¥%(s), where s is the length parameter of the space curve.”

(2) The walls of many living cells are free of tension and
undergo fluctuations controlled mainly by second-gradient
curvature energy.’ This makes the fluctuations so large that
they can be seen in an ordinary light microscope, as first
observed on human red blood cells in 1890.* These giant
fluctuations are crucial to prevent the cells from sticking to
each other, in spite of their attractive van der Waals forces.’

(3) The formation of microemulsions cannot take place
without the ampliphilic soap layer between water and oil
losing its surface tension.®

(4) The strings of color electric flux lines, which bind
quarks and antiquarks, can lose their tension in a phase tran-
sition, in which case they are controlled completely by sec-
ond-gradient elasticity.’

(5) Finally, the cosmos at an early stage of evolution
may not have been controlled by the Einstein action, but by
the Weyl action which involves the square of the curvatures
and thus contains the square of two derivatives of the metric.
The geophysically observed deviations from Newton’s law,
when masses come closer to each other than ~200 m, could
be a signal for such terms (the sign is correct).?

Il. THE PATH INTEGRAL

In all these physical situations, the prototype of the fluc-
tuation problem to be solved is the path integral

(XU, Ty |X,0,7,) =f@x(r)exp(—fdeL(¢)),

x(r,)=v,, (1)

x(Tb) =vb »

x(7,) =x,,

x(7y) =x,,
with the Euclidean Lagrangian ( - =d /dr)

Lr) = %537 + 2 2(r) + %xz(r) —j(Mx() . (2)
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In order to make all integrals convergent we have rotated the

time variable ¢ to imaginary values f = — ir.
After rescaling the variables 7 to 7 =k~

troducing the frequencies @,, @, via

0} + o} = (m/2)x" "3, o} 0} =k, 3)

we are confronted with the probability distribution

(X0, Tp |X,0,7,) = J .@x(f)exp( — f bdr L(T)) ,
x(r,)=v,, ) 4)

.k(Tb) =vb y

137 .4 and in-

x(1,) =x,,
x(7p) =X,
where L is now the Euclidean Lagrangian
L=}[# + (0} + 0})3* + 0} &3x*] —j(m)x(7)  (5)

with an appropriately rescaled current (j = '/ j ). This
can be separated into a pure surface term

L
dt
plus a source term

L,= A=g-t-[%(xjé—xjé)+(wf+a)§)xi], (6a)

Loyrce = —f drj(r)x(1), (6b)
plus a term
Ly= (¥~ (0] 4+ 0)i + 0} 0x), (6c)

which vanishes for solutions of the free field equation
(9} — 1)@} —@3)x(7) =0. )

These correspond to two independent harmonic oscillators
and have the general form

xy(ry=Acoshw,(r—7,) + Bsinho,(r—17,)
+ Ccoshw,(t—7,) + Dsinhw,(r—1,) . (8)

(The two oscillators can be exhibited by introducing the two
auxiliary variables ¢, = ¥ — wix, ¢, = ¥ — w?x and noting
that L, = [¢,(97 — 0})q, — ¢:(92 — 03)q:)/ (@] — @3).
The negative sign in front of the second term leads to the
difficulties with a quantum mechanical formulation due to
an indefinite Hamiltonian.) The proper measure of integra-
tion in the path integral (4) is found via the canonical for-
malism. For a higher-gradient Lagrangian (3) we can follow
the method of Ostrogradski,’ according to which
X (1) =v(7) may be considered as an independent degree of
freedom replacing the Lagrangian (5) by the equivalent one

L =4(i* + (&? + 02 W? + 0* 02x?) — ip(% — v) —jx ,

(5"
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where the Lagrangian multiplier p(7) ensures the correct
relation between v and x. The canonical momenta are
p=1i(dL /dx) andp, = i(dLg/3) = iv such that the Ham-
iltonian is
H( P,x’PwU,T) = lpx + ‘va + Z
=P, + (0} + 0}
+ @] @3x%)ip, — j(r)x, (9)
with the Hamiltonian equations of motion
= -2~ _ o alx+jin,
ax
JdH

ip, = . — (@ +@3)v—1ip,

(10)

H _ P ==
o,
It is now straightforward to specify the measure of the path

integral. In phase space it has the form

=

(XpUp Ty |XaV,74)

f@x@ f“@" "@””

Xexp(j "d'r(ipJ'c +ip,0 — H( p,x,p,,,v,r))) ,  (11)

where {2 x means, as usual, the product of all

N o0
[ e
n=1 — o

over the time sliced positions
x,=x(7,),

where e= (7, —7,)/(N+1) and x, =x(7), X,
= x(7y, ) are held fixed, and fZp/2x is the product of
integrals

N+1 po dpn
nl=IIJ~w_i—;

involving all N + 1 momenta that appear in the canonical

T, =T, +€n,

N1
f drsz— po(x, —x,_,).
n—l

The same rule applies to the conjugate variable pairvand p,,
which are splitintov,,...,Uy .., andp,,,....p,,  , withv, =v,,
Uy 41 = U, held fixed and the ¢anonical integral measure is

ﬁfw dv, NHI dp”n.
n=2vJ - o na= 2
By construction, the amphtude (11) and hence also (4) sat-
isfies the Schrédinger equation
(H( —id,x, — id,,v,7) + 8,)(xvr|x'v’1")

=(—40? + (0] + 03V’ + 0] @

+vd, —j(r)x + 8,)(xv1'|x’v'r’)

=8(x—x")0(v—v)5(r—7). (13)

Using (11), it is now straightforward to obtain the measure

(12)
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of integration for the pure x space path integral (3) as fol-
lows: Integrating out the variables p, and p,, gives a product
of & functions

N
Il 6Gxn — %0y —ev,), (14)

n=2
which can be used to eliminate the integrals over v,,..., vy,
thereby producing a factor 1/6¥~!. The integrals over
PUss..., pUy ., produce a further factor (1/y2me)N. Thus

the measure of the path integral (3) can be written as fol-
lows:

f.@x(f) =€ [f ]
n=l w \27m€ €

Xexp[ipw 41 (Xn 41 —

+ipi (% —xp—€vy)] . (15)
We may now also integrate out the remaining two momen-
tum integrals, thereby eliminating the integrations over dx,
and dx;. For the calculations to come it will, however, be
convenient to leave the measure in this form.

Due to the quadratic form of the energy, the integration
over the spatial variables can most easily be done following
the same procedure as developed for lowest-gradient qua-
dratic energy in Feynman and Hibbs.'® We expand all orbits
around a fixed classical trajectory x., (7), which connects
the initial point x, at velocity v, with the final point x, at
velocity v,, and write x(7) = x4 () 4+ 8x(7). The fluctu-
ations §x(7) then have the property that

Ox(r,) =08x(r,)=0
dv(r,) =6v(r,) =0

Inserting this into the action & = (7 d7 L(r), there is a

classical contribution coming entirely from the surface term
(6a),

dpl J‘ de+l

Xy —€Uy,1)

(16)

A o5 = 3[Vp%p — X, %,
+ 3@} + 03)x,0, — (@5) || ccryi » (A7)
plus a contribution from the source term (6b)
del,wurce = = J‘y de(T)xc] (T) s (18)

plus a fluctuation piece,

Ay = f ’ "T[‘;‘WR)Z + (@} + @) (8%)% + (6x)7]

—j(r)ﬁx(f)] . (19)

Hence we may write
(xp 057y |X,0,7,)
=e - “{cl.lf_ dcl.mum f @ 6X(T)
Xexp(fb[—%-[(ﬁi)z + (@} + 02) (6%)?
" (20)
+ ot o} (6x)’] —j(f)ax(r)}) ,
&x(r,)=0, &x(r,)=0
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5%(r,) =0, 6%(r,)=0

where 8x(7) has now a measure like (15) except that
6xy ., 15 0xg Oy, 1, and 50, vanish at the end points, i.e.,

Den=e ] || = ] B,
f (7 =e nl;ll { o 2re el J-= 27

* dpyi
— " ¢
XJ-_“‘ 2

The vanishing of 8x,, 8x ., ; implies that §x(7) has only the
Fourier components

— i( Py 4 15%xN — p1Ox))

(21)

N
&x(r) = % Y ox, sinv,(r—7,), (22)
m=1
with f=7, — 7, and frequencies
Vo = (/B)m-. (23)

In terms of the Fourier components the exponential in the
fluctuation factor (20) reads

exp[——— S (@ +a}) (@), +0})(65,)°

f drj(r)\/%z&cm sin ‘V,,,(T—T‘,)] R

where
Q% =(1/€*)(2 — 2 cos v,,,€) = (4/€*)sin*(v,,€/2)
(24)
are the squared eigenvalues of the differences
[(x, — x,_1)/€] in Fourier space. Since the Fourier series
has a unit Jacobian, the measure (21) becomes

N e d o
D &x(r)=¢ ] _2__x,,,_ izp;-
m= TE €Y — =

% J' = dpyy. i
—w 27
Neglecting for a moment the couplings to py , , and p,
and to the current j(7), the pure éx,, part of the integrals
gives the product

N - 172
e[ I (€92 + o) (e, + o )]

m=1

@€ W€
- e . I3 .
N~o sinh »,8 sinh w, #

In Fourier space, the couplings topy .  , P, and the current
amount to

— i PN 4+ 18%N — pi6x))

(25)

(26)

J

111 1 18

N .
— Py \/%le 8x,, sin(v,,€)
+ip,\/-‘ S &x, sin(v,, (B8 —¢))
mm 1
+f drj(-r)\/— Y &x,sinv, (r—7,).
m=1

This can be rewritten as

2 .
J;[ —i(Pnsr —pl)m=;3,s,...

—i(Pny1 +P1)

(27)

bx,, sin(v,,€)

8x,, sin(v,,€)
= 2,4,6,...

+[Carin 3,

1,2,3,...

8x,, sin (v, (1 — r,))] . (28)

In the absence of a currént, these terms lead, after the 8x,,
integrations, to the additional momentum integrals

o0 d o0
f 'ip—l dp2 exp[ —'—(PN+1 -p)?
—w 27
2 (1/€*)sin*(v,,€)
B m= (Qz +0)|)(02 +(02)
_';'z'(pN+l +p)?
2 (1/€*)sin?(v,, €) }
X = . 29
B m=54s.. (O +03) (02 +w3) )

Due to their fast convergence, the sums can be replaced, for
€0, by
2 Vin
F%’ (Vi +@}) (v, + @3)

_ 2 1 @) @
"B ot —o} ;(V; ol ¥ +w§)'

These sums are equal to

(30)

e 1 (28 cotn w,ﬂ (12)), for even m,
B(wl —ﬁ)z)\ 2

R — “"ﬂ (12)), for odd m,
B(w? —w,)\ 2

(31)

such that the integrations over p, ;, p, yield the further
factor

o} —of|

€2 (DD,

_ B (0} — @} )ysinh @B sinh w8

21€ 2 [(@,8/2)coth(@,8/2) — (12) 12[(@,8/2)tanh(w,8/2) — (12) 12

f‘”i& ¥ dp,
—w 2 J— o 2m

= (32)
2me’ \ (@? + o} )sinh @,8 sinh w,8 — 20,@,(cosh @, cosh @,8 — 1)
If the current is nonzero, the expression (29) is replaced by
1[2
exp de(T)Sln‘V (r—7,) —i(py,1 —py)sinv,, e)
ﬁ m= l 13,5,..
H. Kleinert 3005
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Ty )
X(f dr' j(r')sinv,, (' —7,) —i( py,, —p,)sin vme)[(ﬂ,z,, +0?) (QF +w§)] -1

2
+_
B m- 245

( drj(r)sinv, (r—7,) —i(py, +p,)sinv, 6)

x( dr' j(r")sinv,, (7' —1,) —i( py, 1 +py)sin v,,,e)[(ﬂfn + ?) (D2, +w§)]-1] _

This gives an additional term in (29),

exp{% f " dr f "dr G(r) () j(r')]
Ts
Xexp[ — i€( Py 41 —p,)j drj(r)h, (1)

—i€( Pyt +P1)J.d7'j(7')he(7')} ’

where
~ 2
G(TyTI) _—
>

sinv,, (7 —
(0%, + 0?)(QZ, + o)

T )sinv, (7' —7,)

h (1) 2 (1/€)sin v, esinv,, (7 —7,)
o T) = —
B m-535s.. (B +03)(Q2 —a?)
(33)
2 (1/€)sinv, esinv,, (r—1,)
h (1) == "
m=246.. (O3 +0?)(Q% —w2)

If we now integrate out the momentapy, , ,, p, the exter-
nal source yields the factor

exp[%fdeJ‘v"’dT’j(T)G(T,T')j(TI)] , (34)
where
G(r,7) = G(r,r') — he(T)R(T) by (DR, ()
D, D,
(35)
J
|0} — @3]

This is the correlation function of the fluctuations 8x (),
x(1)bx (7)) = G(r,7) . (36)

Since 6x(7) vanishes at the end points 7= 7,, 7 = 7, and
has zero velocities, also G(7,7') must have this property.
Indeed, the vanishing of G(7,7,) and G(7,,7) is trivial to
see. The zero velocity at the end points, on the other hand, is
a consequence of the two properties [ which follows directly
from (33) and (31)]:
d
"}—,G(TaT )l‘r"_f —h (T) +h (T) ’
d
—y h == D .
d 5 (T ) |1" g
Hence

(37a)

(37b)

2 G|, _. =0.

ar (38)

Collecting all terms, we arrive at the probability distri-
bution

(xbvbTb 'xavaTa )

= F(B)Cxp[ - -»Q(cl,sf - dcl,source
+ %f bdrf dT’j(T)G(T,T')j(‘r')] , (39)

with the fluctuation factor

Fp) =

(40)

Cy. — V0,0,

J(@} + @2 )sinh w8 sinh 0,8 — 20,,(cosh @B cosh w, B — 1)

The terms & ; and & 4. are the only ones that depend on the initial and final variables x,v,, x,v,. They will be

calculated in the following two sections.

lil. THE CLASSICAL ACTION FOR ZERO EXTERNAL SOURCE

The starting point is formula (18). All we have to do is express the quantities X, , X, , X, , and X, in terms of the initial and
final variables x,v,, x,v,. For this purpose we invert the matrix relation

X, A
Xp B
x| cl
*b
with
3006 J. Math. Phys., Vol. 27, No. 12, December 1986

(41)

H. Kleinert 3006



1 0 1 0
41 5y (&} £P)
M= s 42
0 @, 0 @, (42)
@S; @€ @5; @)X
where ¢, =cosh w,f, 5, =sinh w8, and find
2 2 2 2

M~'=(1/IMR, (43)
where |M | is the determinant
M| = (&} + @3)s5:5, — 20,0,(cic, — 1), (44)

and thus precisely equal to the expression under the last square root in the fluctuation factor (40). The matrix R is equal to

—0,0;,(c0; — 1) + 0355, @1@,(c; —¢3) — @€ + @5,Cy @15 — @5,
R= @D1W25,C; — wg.cls2 — 0,08 + 035, @55, — @y(c,c; — 1) @,(¢; — ¢;) (45)
' aﬁslsz — @,@,(c1c; — 1) — 0w,(¢; —¢;) @1C15y — W25,C; — @35 + @a5, '
— @?510; + 0,565, W18 —@ywy8; @,(ci6— 1) fwsis,  —wy(c;—¢,)
This gives
X, @3w,(c; —¢,) + (12) T Ix,
3 2 2
X, 1 —wwy(c,6; — 1) + (12) 4+ 201 035,5, X,
%, = (&% ¢y, 51,02 Cpy03 5, )M 1 = , 46
» = (@]€1,@7851,02C2,035;) , M| — 0, + 0w, + (12) v, (46)
vb a)?clns'z —w%mzsch + (12) vb
xa _m?wz(cl02 - l) + (12) + 2@%@§SIS2 T xa
x Dlw,(c; —cy) + (12) x
ia = (wf,o,(v;,o)M_l > ='_1— 31 7 2 2 ’ ’ (47)
v, M| — @045, + @Tw.8,c;, + (12) v,
Vs w35, — wiwys, + (12) Uy
Xq w5, + (12) T Ix,
Xp 1 — @Y @58,C; + @] w3 ¢5; + (12) Xp
%, = (038,0] @3 5,,m3¢, )M ! =— , (48)
b 151,01 C1,003 2,003 C> v, M| D oy(c, — ;) + (12) 2,
Uy wtss, —alw,(cic, — 1) + (12) vy

and, upon inserting this into (18), the classical action
A 0 = (172IM N {(0} — 0}) [ (@165, — @5:¢,) (V] + V) — 2(@,85, — @,5,)v,0, ]
—20,0,[ (@} +@3)(c16; — 1) — 20,0558, ] (VX5 — U, X,) + 20,0, (0] — @3 ) (¢, — €2) (VpX, — V,X})
+ 0,0,(0? — 02) (0,5,6; — ©5€,5,) (X2 +x2) — 20,0,(0} — 0} ) (@0,5; — ©25,)%X,X,} . (49)

In the absence of external currents, this can be inserted into Eq. (39) giving the desired probability distribution. Before we go
on to calculating the full j#0 contributions, it is useful to first study a few properties of the j = 0 result.

r
IV. THE PARTITION FUNCTION AT /=0 and forming the trace
The quantum statistical partition function of the j =0 w w
system is obtained by setting x, = x, =x, X, =v,=v, in Z =f dx f dv(xvr, |xvr,) . (52)
which case the classical action becomes - -
A g =0x + b2, (50) This yields
with Z=Fp)——
a = (1/|M])(@? —a2)@,(c, — 1), — (e, — 1)sy), Vab
b= (1/|M|)(? — 0} )ow, —F(B) m[M]
X{@;(c; — 1)s; — @,(e; — 1)s3) (51) \/(“’% — @3 Y’ o,w,(c; — 1) (e, — 1)
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1 i
2 Jle,= D= D
_ 1 1
2 sinh(w,8/2) 2sinh(w,8/2)
The result factorizes into the partition functions of the two
harmonic oscillators contained in the system. This could
also have been obtained directly from (4) by summing over
all periodic paths, which would have given
H 1
mov iz es [(EQ + €02 ) ER, +€al)]
_ 1 1
2 sinh(w,8/2) 2sinh(w,8/2)

(53)

Z =

(34)

In this product, the integer m runs through all even
numbers, positive as well as negative, since periodic paths
have the Fourier expansion

(€"'x,, +cc.), (55)

V. LIMITING CASES

Let us check our result (39) at j =0 by looking at a
couple of limiting cases that have been solved before. Taking
@, =0, o, = @, the Hamiltonian (9) reduces to that of a
harmonic oscillator in the variable v with an external linear
potential ijpv. The integral over Zx in (11) forces p(r) tobe

a constant (via the canonical term exp §7* d7 ipx in the inte-

grand) and the path integral (11) can be written as the Four-
ier transform

dp P ip(xy — x4)

Ve Tp 10,7,
Py (07 | o

o0
(xbvbTb I'xa VeTq ) = J‘
-0

(56)
of the following probability distribution:

(vbTb 'vaTa )p EJ‘ @v(']‘)

Ts "2 2
Xexp[ - J; dr(v? + wT ¥+ ipv)] .
(57)

This path integral is well known. It is obtained by a simple
shift of the standard oscillator expression'®

b +2 2
W7y |Va7,) =j-@v(r)exp[ - f df(% + “’Tvz)]
(] w
= [—— _—— 58)
\/ 27 sinh 0B e"p[ TsmhaB

X [cosh wB(v} + v2) — 2v,0, ]] ,
with s=sinh wp, c=cosh wf, namely,

(vbTb |vaTa )p

= ’-2(0? exp{ -—;:—[c(v,z, +v2) — 20,0, ]

3008 J. Math. Phys., Vol. 27, No. 12, December 1986

C —

_ip

=L, +0,) ZP;z’ﬁ—zca;l)], (59)
whereupon (56) becomes
(X055 |X,0,7,)
_ 2 1 )
2w JmB yT—p

Xexp[ - —%[c(uﬁ +v3) —2v,0,]

o 1
B1-p

B 2
[xb—xa—‘_z—p(vb +va)]}s (60)
with
c—1 _ tanh(wf /2)
wPs (@B/2)
Taking the trace of (60) with respect to the velocity variable,
the distribution acquires the simple form

1
2 sinh(wf /2)

1 - @iee—x?

X [ —
278 /w
The prefactor 1/[2 sinh(wf /2)] accounts for the partition
function of the harmonic oscillator associated with the vari-
able v. Apart from that, expression (62) shows the standard
mean-square end-to-end distance of a random chain, namely
((x, —x,)?) =B /w. It has the same linear behaviorin B as
in the absence of the stiffness term X2,
It is easy to verify that our general expression (39) with
(40) and (49) reduces to (60) for @, = 0. Indeed, then

|M | »wo,[0fs — 2(c — 1)] = vw,0Bs5(1 —p)
and

p=2

(61)

(beb |xa Ta ) =

(62)

1

28s(1 —p)

X{(wBec — 5) (v} +v2) — 2(wf — s)v,0,

—2w(c — 1) (v,Xx, —v,X, —V,X, +V,X,)

+ o’s(x, —x,)%}, (63)
giving the correct exponent as well as the fluctuation factor
in (60).

If we also let w -0, then 1 — p— Lw?B? and the action
reduces to the simple expression

A = (1/28) (v, — v, )* + (6/B3)

X [xp — %, — (B/2) (0 +1,)]%, (64)
which could have been found directly from the classical orbit
X —X, 4+ VT + X7 + X37 (65)

after adjusting the parameters x,, x; to the initial and final
values

X3= — (2/B*)[x, —x, — (B/2) (v, +v,)],
x, = (3/BH)(x, —x,)
+ (1/28) (v, —v,) — (3/28) (v, +v,) -
The transition probability becomes

oA cl,sf ™

(66)
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(X0 Ty [XaVaTa) = (S3/mB)e ™ To. (67)

Another useful limit is that of w,—®,=w. Setting
0, = o + €, @, = & — €, the determinant becomes

|M | —4€(s* — ’B?) . (68)
Inserting the limit
¢, =c(l + eftanh(wf)) + (€/2)B%+ - - -,
2 (69)

5, =5(1 £ eBcoth(wB)) + (€/2)B* + - - -,
2

and using coth(wf) — tanh(wf) = (1/sc) we find the clas-
sical action

Ly, = ;5-:%;52-{ (sc — of) (v} + V2)
— 2(s — coBu,v,
— (s + *B?) (VpXy — VoX,)
+ 208(0,x, — V,%,) + &*(sc + af) (x5 + V)
— 20%(s + caB)v,x,}, (70)
and hence
(%05 T |XaVa 7, ) =%"‘[?—___‘——a:;n—ﬂ—e_dd"- (71

In the limit @ — 0, this reduces again to (67) with (64), as it
should.

Vi. THE SOURCE TERMS

The source appears in (18) and the last term in (20).
First we calculate (18):

dcl,wuree = - Jq decl(f)j(T) s

where x,, (7) is given by (8) with 4, B, C, and D expressed in
terms of x, v, X, U, via the matrix M ~' of Eq. (42). Hence

(72)

coshw,(r—1,)
1 sinhw,(r—7,)

x,(r)=—R

(73)
1M |

cosh w,(7~—17,)
sinh @,(7 —7,)

In the ordinary harmonic oscillator, the usual way of

giving the classical solution is more symmetrical in 7, and 7,
x, = (1/sinh wB) (x, sinh o (7~ 7,)
+x, sinh w(r, — 7). (74)

It displays directly the interpolation between x, and x, . We
can also bring (73) to such a form, which, however, is now
much more involved. By expanding x,, into the four solu-
tions
fo(r) =w,sinbw,(r —-7,) —w,sinhw,(T—17,),
fu(m) =w,sinhw, (7, —7) — w, sinhw,(7, —7),
g, (r) =coshw,(r —71,) —coshw,(r—17,),
8, (7) =cosha, (7, — 1) —~cosha,(r, —7), (75)
which have the boundary properties

fa(ra)=o’ f(;(‘ra)=0’
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folrs) =0, fi(r,)=0,
ga(Ta)=09 g,',(r,,)=0,
g (n,) =0, g, (r,)=0,

itis straightforward to form the linear combination, with the
correct initial and final values

xXy(r) = — (1/|M])
X{[ %y (@18 — @58,) — v, (€, — )] fa(7)

(76)

+ [x,0:8 — @28;) — v, (c; —€3) ] fp(7)

— [Xp@1@5(c; — €;) — vy (0955, ~ @,5,) |8, (7)
— [x,0,0,(c, —¢3)

— v, (@25, — @:15,) &, (1)} . 77

This may be more useful than (73), for some purposes.

Let us now turn to the fluctuation part of the external
source term in (39). Notice that it is sufficient to calculate
the odd and even sums '

2 sinv,, (r —71,)sinv,, (7 —71,)
G, (r,7) =—
B m=5hs (@ + o} (D, + o)
, 2 sin v, (r — 7, )sinv,, (v' — 7,)
G (r,7)=—
B m=%4s Q5 + 0}) (Q}, + @3)
(78)
Then
G(r,m) =G, (1,7 + G, (r,7) (719

and the functions 4, (7), A, (7') are simply found from the
derivatives [compare (37a) ]

h,(r) = lim —C?;ao(r,r') .

Y7, e

(80)

In the sums (78) we can replace 22, by v2,, due to their fast
convergence, and write

G, (r,7) = [/(@} — }) (G2 (1) — G&(r,7)), (81)
G.(r7) = [I/(e} — 0} [(GE(1,7') ~ G2(r,7)), (82)
where

G‘:(T,T') ==._2_ Siﬂ Vm(f"'Ta)Sin vm(T'—Ta)
e m=1,3,5,... (szn + [02)
2,4,6
= 4+ 2 sinv,, (1, — 7)sinv,, (' — 7,)
B m=135 (»va" + m2)
2,46

(83)

are the odd and even frequency parts of the correlation func-
tion of the ordinary harmonic oscillator. They, in turn, are
simply obtained from the standard boson and fermion corre-
lation functions

l — iV, T l
Gy (1) =— w1
a( m=0,%2, + 4. ‘Vf,, +0)2
1_coshofr— (B/2)]
20 sinh(wpB /2)

1 .
GF(T)=— eleT
m=+1+3+4

, 1e(0.8), (84)

Vi + @
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2 cosh(wp /2) ’ )

(85)

For 7 = 0 these coincide with the sums appearing in Eqgs.
(30) and (31), as they should.

Notice that the right-hand side is valid only for 7€ (0,8).
Outside this interval, the functions have to be continued pe-
riodically or antiperiodically for G, or G,. An explicit repre-
sentation which shows this property is obtained by rewriting

& “ dv _; 1
Gs(r)= S J LY - 2 86
5 (7) 15— 2 v+ & (50
& © dv _; ; 1
G (1) = E ___e_"’(7'+lﬂ)e””___, 87
=(7) 1) 2T vV + o’ ¢

where the sums over all integer numbers / squeeze the v inte-
grals into the appropriate sums (84) and (85). Performing
the integrals over v gives

Gy (1) = i)_ O+ e+

+6(r — IB)e” "+ ),
(88)

Ge (1) === (= )(B(r + IBe =7 +®
20 7

+ 6(7 — IB)e” "8,
(89)
For r¢(0,8), the sums split into / =0,1,2,...and I = — 1,
— 2, — 3,... and can be performed to yield the results (84)
and (85). For r(5,2f3), however, these have to be replaced
by
1 cosh w[r — (368/2) ]
20 sinh(wp /2)

Gyp(7r)= (90)

[re(B,28) ] .
_1 sinhw[r - (38/2)] 91
20 cosh(wf /2)
When forming the appropriate combinations of these corre-
lation functions in (83) and (84), we have to distinguish the
cases7 + 7' <7, + Ty, T+ 7' >7, + 7,. In the first case we
find

Gl (rr)= —

Ger(7) =

1
2w sinh(wf /2)

b +Ta

X sinh a)(r - )sinh o(r' —71,),

for 7>7'e(7,,1), THT <7, +7, (92)

1

Go(r7) = —————
2w cosh(wf /2)

X cosh w(f—— Te :T" )sinh o(r —1,).(93)

In the second case

Go(rr) = !

2w sinh (wf /2)

Xsinh (7, — 7)sinh co(r’ Tt T") ,

2
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for r>7'e(r,7,), 74+7>7,4+7,, (94)
ot 1
Ga ()= ——-rroouo
2w cosh(wf /2)
Xsinh w(7, — 7)cosh co(r' _IatT ) . (95)
As a check we add the even and odd results and find
G“(7,7') = (@ sinh wB) !
Xsinh w(7, — 7)sinhw (7' —1,), 7>7,
(96)
in either case, which is the correct correlation function
G?(r,7)
= (6x(7)0X(T') )| oscin
=£ sin v, (r—7,)sinv, (7' —7,) (97)
B mTa,. Vf,, + w?

appearing in the path integral of the ordinary harmonic os-
cillator.!! Inserting (94)—(97) into ( 82) we find the odd and
even parts of the correlation function G(7,7'):

G.ry= ——L (1 g w,(r_ ™ T")
(@2 — 0?) \2o,s, 2
Xsinhw, (' —7,) — (12)) ,
for 7>7'e(r,,7), T+ 7T <7, + 74, (98)
?;,,(r,r’) =— L > (L cosha)l(T—Tb—tIi)
(0; —7) \Zco,c, 2
Xsinh o, (7' —7,) — (12)) .
and
?;,,(m') =—3—1—2( sinhw, (r, — 7).
w5 — o} 51
X sinh wl(r’ _Ia :T" ) — (12)) ,
for r>7'e(ry,,7,), THT>T, 47, (99)
a',,(f,f’) = — Z)i_i—a?(h)lc, sinhw, (7, — 1)

Adding up the even and odd parts we find, according to
formula (79),

1 -—l—sinhcol(r,, —-7)

e !
Glr) = ———s
0] —w; Las,

Xsinh @, (7 — 7,) — (12)] (100)

in either case. This is the first part of the correlation function
(6x(7)6x(7')) in Eq. (35).

Since we have treated the even and odd parts separately,
it is now easy to find other pieces 4, (), 4. (7') from the
limits (80)
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1 [ 1 As a cross check, we may form

h,
(= — L2 sinh(w,8/2)
tim 24, (7),
Xsinh(co,('r Lt )) - (12)] s 7=7a 7
2 which gives D,, D,, as it should [compare with (37b) and
h(r)= — l [ 1 3]

Combining (103) and (104) and using D,, D, we ob-
tain the complete correlation function of the fluctuations
{recall (35)]:

A L 2 cosh(w,8/2)
(101

Xoosh(w,(r— Te :T” )) - (12)] .
|

- __._1___{(_1_.. sinh @,(7, — T)sinh @, (7' — 7,) — ( 12))

o} — o3 N,

(Ox(r)6x(7')) =G(r,7') =

Ta + T

1 1 {

* 2 (@, coth(@,8/2) — (12)) \sinh(@,8/2)

1 . N Ta + Tb) )
! smhe(r—-2FT)_ 12
x(sinh(w,ﬂ/2) s """('r 2 (12)

1 1 (

1
+ 2 (@, anh(@,8/2) — (12))\cosh(@,8/2)

a),(f’ T _;T" ) — (12))} .

)-)

sinh a),('r -

Ta + T

)-o)

cosh co,(r -

(102)

Y
cosh(w,B/2)

As a final check we verify once more that this Green's
function vanishes at the end points together with its time
derivatives. This completes the calculation of the probability
distribution (x,v,7,|x,v,7,). The result is Eq. (39) with
the prefactor (40), the classical surface term (49), the clas-
sical source term (72) withx, () givenin (73) or (77), and
the fluctuation part of the source term given by the correla-
tion function (102).

VIii. LIMITING FORMS OF SOURCE TERMS

For completeness, let us perform the limits w,—0,
w, -0, w, -0, and @, »w, on the source terms. For w, =0,
@, = w the classical solution (77) reduces to
|

Bw(l —p)
X H(xb - %Bv,,)(sinh o(r—1,) —0(r—1,))

Xg =

+ (Xa - ‘%BU,)(Sinh C()(Tb —— 1‘) — a)(Tb — T))]

- [(xb -‘g-ﬁw —%)b-)(l wﬂ)(cosh o(r—71,)—1)

+(ngpo-)(1-)

X{cosh w{r, —7) — 1)]} . {103)
If also v -0,
3
Xy = — 12((x,, ——-g—v,,)—(-%ﬂ%’—)—— (ba)
Y
— (x,, —%v,,)-f-f—“—)&;zi)——f- (ba)] . (104)
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'In the limit @, — @, =2e-0, the functions (75) tend
towards

fa(7)=26ele(r —7,) coshw(r — 7,) — sinhw(r —7,)),

g, (r)-2e(r—7,)sinhw(r—1,),

with analogous limits for £, (7), g, (7), and the classical
solutions become

bl -wo o

Xcosh(r — 7,) — sinh w(7 — 7,)) — (ab)

X (T) = -

- xb(coﬁs + (s — aff ))0)(7 —T,)

Xsinhw(r—7,) + (ab)}. (105)

The fluctuation part of the source contribution has the fol-
lowing limits: for @, -0, &, = @,

6(?‘,7’) 2 - _12..[_!.. sinh w(fb — T)Sinhco('r' . Tb)
o° |l ws
_(Tb_T)(T—Ta)]; (106)
B
for(l)z—’o, a)l—>0,
- 1
G(rnr')s ——(1, —T)(7' —1,)
o8 3
X[(rp =7+ (' —7,)*~B%]; (107)

forw,—0; = @,

a('f‘, ’ 13 [(1 + wf f)sinh (1, — r)sinh w(7' —7,)
2w°s s

—sinh w(r, — )w(s — 7, )coshw(r —7,)
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—a(r, — 7)cosh o (7, — 7)sinh (7' ~7,)];
(108)

with the latter reducing properly to (107) in the limit @ —O0.
The functions &, (7), k, (7) become, for @, -0, w; = w,

A )___(smhw(f-m (r, +T,,)/2) T (1, +T,,)/2)

2 sinh(wf /2) oB
(109)
1 {cosholr — (1, +7,)/2) 1)
h (1) = —-——-—( —_—t; (1
) w? 2 cosh(wB /2) 2 (119

for w,—0, @, -0,

pan === - =57 - 4]

(111
l ' Ta +Tb )2 l 2]
h, = e —_ —_—— ; 11
) 4[(7 2 e (12)
and forwz"’a)l =,
i
h =
N = (e 2)
x(ofr — g ol s - 212
2 2
’B —~—— coth — o smhw('r-i'—%—ri)), (113)
h(r)= — L
° 40* cosh(wB /2)
X(w(f-— ot )sinh az(r-f-f'-—ttb—)
2 2
9B ann 28 cosha)(r—-m)); (114)
2 2
and the quantities D,, D, for w,~0, 0, = o,
D, = ﬁwz(“’ﬁ th"’B _1) (115)
1 B B
D, = ~—tanh-—-—;
° = Bt 2 2 (116)
for @, -0, w, -0,
D,=48, (117
D, =}8; (118)
and for o, -, = w,
B (coth(wﬁ /2) 1 )
D, =F - 119
8 wB /2 sinh*(wB /2) (119
ﬂ(tanh(wﬂ /2) 1 )
p,=£ : 120
8 wB /2 + cosh®(wf /2) (120)

Combining these &, h, and D as required by (35) we obtain
the limiting terms of the correlation function G(7,7').

VIIl. SECOND QUANTIZATION

Frequently oneis not interested in studying the behavior
of a single fluctuating-line-like object but wants to consider
grand-canonical ensembles of these. It is then convenient to

3012 J. Math. Phys., Vol. 27, No. 12, December 1986

introduce a single fluctuating field whose Feyman diagrams
are capable of representing all the different individual line
contributions. For the usual random chain with a Lagran-
gian (D /2a)x? in D dimensions, it is well known how to
achieve this goal. For open chains of a given length L the
appropriate field is ¥(x,7) and has the action'?

D
x:f drfdvx{w(a, — )+ YT H(— 8,9},

(121)

where H(p) = p?/(2D /a) is the Hamiltonian and u is the
chemical potential of a chain element. For loops of any
length L, with a distribution e ~ ™~ , the fields @ (x) depend
only on the spatial variable x and the action is of the Klein~
Gordon type!?

o =fd”x e(X)H( —id,) + m)p(x)

=1 [ami@emr +miprw1. )
In the present case where the Lagrangian contains a second
time derivative, a second quantization can be achieved by
introducing, for open chains of a given length L, a field
¥(x,v,7) which depends on position, velocity, and time with
an action

L
.ﬁ/-:-f drfd"xfd”x
0

X{¢+ (af —#)w + ¢+H( - i ax’x) - l awv;‘r)d’} s
(123)

where H( p,x,p,,v,7) is a Hamiltonian of the type (9) in D
dimensions. For closed chains of any length one has, similar-
ly, a field @(x,v) and an action

A = -;— f d®x d®v o(x,V)(H(p,x,p,,¥,7) + m)p(x,v) .

IX. CONCLUSION

We have calculated the exact amplitude for fluctuating
orbits x(r) governed by the general second-gradient La-
grangian (2). The results is given by Eq. (39) with the fluc-
tuation prefactor (40), the classical action (49), the classi-
cal source action (72) and (77), and the fluctuation part of
the source given by (102).
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Probability density for Bose-Einstein and Fermi-Dirac particles:
Slater-Kahn functions

M. D. Kostin
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A nonlinear form of the Schrédinger equation is used to derive a partial differential equation
for a Slater—Kahn function, which in turn yields the probability density of Bose—Einstein and

Fermi-Dirac particles at a given temperature.

I. INTRODUCTION

The Slater sum for a quantum system at equilibrium at
temperature T has been defined by the expression’

SxB) =Y [¢.(x)]*exp(—BE,), (1

where ¢, (x) is the normalized wave function of state #, E,, is
its energy eigenvalue, 8 = 1/kT, k is Boltzmann’s constant,
and the sum extends over all quantum states. The probability
density is then given by

P(x.B) = S(x.B)/Z(B), (2)

where the partition function Z(B) is obtained by integrating
S(x,8) over all positions:

Z(B) = f S(x,8)dx. 3)

Important properties of the Slater sum for a single particle
were derived by Uhlenbeck arid Gropper.” Special attention
was given by Kahn® to the Slater sum for two Fermi~Dirac
or two Bose-Einstein particles,

K(x,,x,,8) = ‘%‘ z z [Ym (XY, (x3)

:t ¢n (x1)¢m (x2) ]2 exp( —BEm “‘BEn )’
4)

where the + sign refers to Bose—Einstein particles and the

— sign refers to Fermi-Dirac particles. To evaluate the
two-particle Slater-Kahn function directly from (4) is very
difficult since one would have to obtain all of the eigenfunc-
tions and eigenvalues and carry out the double summation.
The problem is especially difficult when the eigenfunctions
¥,, must be calculated numerically, since the higher eigen-
functions have numerous oscillations, and cannot usually be
calculated with accuracy. It is the purpose of this paper to
derive a partial differential equation, the solution of which
can be used to obtain a Slater—Kahn distribution function for
Fermi-Dirac or Bose—FEinstein particles.

il. SLATER-KAHN FUNCTIONS

The probability density P(x,8) for finding a Fermi—
Dirac or Bose-Einstein particle at position x when the sys-
tem is at reciprocal temperature £ is given by

P(x,8) =K(x,8)/Z(B), &)
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where K(x,3) is the Slater—Kahn function obtained by inte-
grating (4) over one of the particles,

K(xB) = f K(xx,8)dx,, 6)
and Z(f) is the partition function of the system,
26) = [ Kwras. 7

Substituting (4) into (6) and carrying out the integration
gives us

K(x8) =% 3 3[R, (x) + R, (x)

:t 28man ('x)] exP( _BEm —BEn)’ (8)

where R, (x) = [¢, (x) ] The probability density R, (x)
satisfies the nonlinear differential equation studied by
Bohm,*

(R?/R,) — [(R})*/2R2] = (4m/#) [ V(x) —E, ].
9)

It has been shown that for a nonlinear equation of the form
(9), it is possible to derive a linear equation by multiplying
(9) by R 2 and differentiating’:

(#/m)R " + 8[E, — V(x)]R i — 4V’R, (x) =0.
(10)

Next, we introduce the Slater—Kahn function
K,(x8) =1[Ks (x,8) — Ke (x.8)], (1

where K (x,8) is the Slater-Kahn function for Bose-Ein-
stein particles and K. (x,8) is that for Fermi-Dirac parti-
cles. Substituting (8) into (11) yields

K (x8) =Y R, (x) exp( —2BE,). (12)

We multiply (10) by exp ( — 28E, ) and sum over all states.
Noting that

K,

e =§n:R,',(x) exp( — 28E,), (13)
— —-2 R' - En En’ 14
3B ax Z #(0) exp( — 26E,) o
3
8x3 n
we obtain
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# 3°K, 3K, JK,
—_ = 2V- V'K . 16
dm x® IBIx t x + 1(xH) (16)

Both K, (x,8) and Ki (x,8) can be derived from K, (x,5).
To do this, we introduce the Slater—Kahn function XK, (x,53):

K;(x,8) =3[Ks (x,8) + K¢ (x,8)] . 17
Substituting (8) into (17) gives us
K,(x,8) = [ Y exp( —ﬂEm)] Y R, (x) exp( —BE,).
m n (18)

The integral over X, (x,3) with respect to position will be
denoted by ¥, (B):

Y,(8) = f K, (xB)dx. (19)

Substituting (12) into (19) and noting that wave functions
¥, (x) are normalized so that

fR,, (x)dx =1, (20)
we have

Y,(B) =Y exp(—28E,). (21
Combining (1;), (18), and (21) gives us

K,(xB) =Y,(B/2)K,(x,8/2). (22)

Thus, both K (x,8) and K¢ (x,8) can be obtained from
K, (x,8):

Ky (x,8) = K,(x,B) + K, (x,8), (23)

K (x,8) = K, (x,8) - K,(x,5). (24)
The corresponding probability densities are given by

Py (x,8) =Ky (x,8)/Z5 (P), (25)

Pe (x,8) = Ke (x,8)/Z¢ (B), (26)

where the partition functions are
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Z,(8) = f Kp (xB)dx = Y,(8) + Y,(B), (27

Z.(B) = f Ke(xBldx=Y,(8) - V,(B),  (28)
and Y,(8) is the integral of X, (x,) with respect to position

Y,8) = f Ky(xB)dx. (29)

Finally, substituting (18) into (29) yields an expression for
Y,interms of Y:

Y,(8) = [Y,(B/)]% (30)
Thus, both probability densities Py (x,8) and P (x,8) can
be obtained from the solution of the differential equation
(16) for the Slater—Kahn function K, (x,5).

In summary, a linearized equation derived from a non-
linear form of the Schrédinger equation has been used to
derive a partial differential equation for a Slater-Kahn dis-
tribution function. It has been shown that the solution of this
equation can be used to derive the probability density for
Bose-Einstein and Fermi-Dirac particles.
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Utilizing set theoretic arguments, matrices of shift operators have been constructed, the
determinants of which yield recursions that describe exactly the occupational degeneracies for
three differently shaped particles (trimers, L-particles, T-particles) distributed on a 2 XN
rectangular lattice. On the basis of these recursions, the expectation, normalization, dispersion,
and continuous representation of the statistics have been calculated and compared for each

kind of particle.

I. INTRODUCTION

The statistics that govern the occupation of lattice
spaces by complex particles (which occupy more than one
lattice site) are different in three ways from comparable sta-
tistics for simple particles (which occupy a single lattice
site): (1) there is no statistical equivalence between particles
and vacant sites; (2) the occupation of a site insures that at
least one of the nearest neighbor sites is also occupied; and
(3) the possible existence of isolated vacant sites cannot
serve as the sole criterion for determining whether or not a
site can be occupied.

For these reasons, it has been difficult to formulate, in
an analytic way, the statistics (and kinetics) of occupation
for complex particles distributed on a lattice. It has long been
recognized'~ that the kinetics of occupation of even one-
dimensional lattices by dimers cannot be handled in a statis-
tical manner., However, considerable progress has been
made in handling the statistics of dimers on 2X N lattices*
and other two-dimensional spaces.”'? This work has cul-
minated in a beautiful paper by Phares et al.*> The occupa-
tional degeneracy for dimers on a quasi-three-dimensional
space has also been considered.*

The occupation statistics for trimer particles (occupy-
ing three linearly contiguous sites) distributed on a 3XN
lattice has also been treated."

The purpose of the present paper is to develop and com-
pare the occupational statistics for several kinds of more
complicated particles distributed on a 2XN lattice. The
method we employ is not limited to rectangular 2 XN lat-
tices, or even to rectangular lattices, but the magnitudes of
the calculations involved can rapidly become formidable for
lattice spaces of greater size and dimensionality, as well as
for more complex lattices (e.g., hexagonal lattices).

To illustrate the method used to treat more complex
particles and to contrast the results obtained, we will treat
trimers, L-particles, and T-particles (see Fig. 1). These
three kinds of particles are chosen to examine the influence
of the degree of rotational freedom and particle size (i.e.,
number of lattice sites occupied by each kind of particle) on
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the occupational degeneracy. Thus, the trimers have no rota-
tional freedom but may be moved from one row to another
and occupy three lattice sites. The L-particles also occupy
three lattice sites, but they have complete rotational free-
dom. The T-particles occupy four lattice sites and exhibit
top-to-bottom rotation only.

Although we limit our discussion to these three kinds of
particles, it should be clear that the method used can be
extended to particles of any configuration.

On the basis of set theoretic arguments, we now develop
récursion relations that describe exactly the occupational
degeneracy for three kinds of (indistinguishable) particles
distributed on a 2 X N rectangular lattice.

For the purpose of establishing the necessary recur-
sions, we define an «; (N)-space to be a 2 X N rectangular
lattice space with j sites deleted from either the lower or
upper left-hand corner (see Fig. 2). We first use these

) olo] oo
o+o+to » Lo+0 o
(b) Q sandhandly o1 Q
o+d 61d o oto
© o0 oo ototo
o o ototo b

FIG. 1. (a) shows six trimers arranged on a [2 X (14)] rectangular lattice
space; (b) shows six L-particles arranged on a [2X (14)] rectangular lat-
tice space; (¢) shows four T-particles arranged on a [2 X (14) ] rectangular
lattice space.
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og-space

L o y-space

L1

o 5-5pace, efc.

FIG. 2. This figure serves to define the three [2 X N] rectangular lattice

spaces, a,, a;, and a,.

a; (N)-spaces to treat indistinguishable trimer particles.

. TRIMER PARTICLES

We inquire as to the state of occupation of the upper,

left-hand site(s) of an a;-space. Referring to Fig. 3, we see
that 4, [ V,q], the number of unique arrangements of ¢ indis-
tinguishable trimers on an a; (V) lattice can be decomposed

as follows:

Ao[N,g]l =A,[Ng] + 4;[Ng—1], (1a)
A[Ng] =A[N— 1,g]1 + A,[N-14—1], (Ib)
A,[Ng]l =4,[N—14] +4,[N—249—1], (lc)
A [Ng] =A,[N — 1,q] + 4p[N—-3,4—1]. (1d)

Equations (1a)—(1d) describe the decomposition of the sets
of arrangements of trimers on the various a;-spaces. Thus,
Eq. (1a) says that the number of ways of arranging ¢ trimers
on an a, lattice is just the number of ways of arranging the
trimers when the upper left-hand site is vacant plus the num-
ber of arrangements when the upper left hand compartment
is occupied. (See the three upper left-hand spaces in Fig. 3.)
These are the only two logical alternatives. Since these sets
are disjoint, their union is merely their sum.

If we associate the shift operator R with the reduction of
the value of N by 1, and the shift operator S with the reduc-
tion of the value of g by 1, then

A, IN—jq—k]=RIS*4,[Ng]. (2)

Because these shift operators commute, they may be
manipulated in a manner analogous to the way in which
scalar variables are treated. Eqs. (1a)-(1d) may then be
written in matrix form:

-1 1 0 S\ /A,

R -1 RS 0 )4,

0 R+R™ —1 0 |Jl4, =0 ()
3s 0 R -1

For Eq. (3) to have a nontrivial solution, the determi-
nant of the shift operator matrix should annihilate the solu-
tion space (4,4, A, A;)."*'® Thus, the determinant of the

Ag [N.q} = Aq[N.q] =
nia | ETIREN st
st | CEEEERER sraen
FIG. 3. The decomposition of the degen-
eracies 4y, A,, A,, and 4.
HIRED  wvo- | TIERER oo
CHERER weo | SRR s
SR aesn | SSSEERER  sotaa
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shift operator matrix, operating on any of the 4;’s, yields the
same recursion:

A[Ngl =A[N—-14] + 4[N —2,g—1]
+A[N—-3g—1]+24[N—3,4g-2]
+A[N—4g—2] —A[N-54g-—3]
—A[N—-6g—4]. 4)

Incidentally, the shift-operator matrix contained in Eq.
(3) may be readily extended to A-bell particles (where 4 is
the number of linearly contiguous sites occupied by each
particle). The corresponding shift operator matrix is a
{A +11X[A + 1] field in which the elements of the main
diagonal are — 1; the elements of the diagonal just below the
main diagonal always contain R and the main reverse diag-
' onal elements always contain R” ~ ! §, where 7 is the number
of therow (1<r <A + 1); in addition, the element of the first
row, second column is 1. All other matrix elements vanish.
The normalization for the statistics described in Eq.
(4), Ay, is
Ay=Y A[Ng]. (5)
q=0
Using Eq. (4), one obtains from Eq. (5) a recursion for the
normalization:

AN =AN—I +AN—2 +3AN—3
+Ay_4s~Dy_s—Dy_s. (6)

If we assume that Ay = kR", then Eq. (6) becomes

RS—R°—R*-3R*—R*+R+1=0, (7)
which has the following roots:

R, =2.147899 04,

R, = --0.341 163 901 + i[1.161 5414] ,

R, = —0.341 163901 — i[1.161 5414] ,

Thus, a general solution for Ay is a linear combination of
these solutions, i.e.,

Ay=Y kRY, 9)

where, using the initial values from Table I, we obtain
k,=0.372922 451,
k, =0.237 569 540 — i[0.149 876 314] ,
k; =0.237 569 540 + i[0.149 876 314] ,

(10)
.= 0.227 162 317 + i[0.047 611 525] ,
ks =0.227 162 317 — i[0.047 611 525] ,
ke =0.105 506 147 .
AsNo o, Ay=k,RY, e,
Ay =[(0.372922 451]{2.147 898 9041~ . (11)

If we define the coverage 8 to be the fraction of all lattice
sites that are occupied, then the expectation of & may be
written

where
-1
@v={3 s Va5 4 10a1}
q q
= Lsuwag. (13)
AN q
It follows that
3
0)y = q] .
( )N INA, ;qA [Ng] (14)

(8) Utilizing the recursion, Eq. (4), and assuming that, for
R,= —0.539495 17 +i{0.368 989 40] , sufficiently large N,
R,= —0.539 495 17 — i{0.368 989 40] , (O =@y =(O)y_,=""=(8), (15)
R,=0.682 327 803 . we obtain
J
5A 2 - -
) =i{ Ay_2+585_3+2A5 4 —3A5_s—8AN ¢ ]’ (16)
2 Ay 428y ,+9Ay , +4AN_, —5AN_5—6Ay_,
l
or, using Eq. (11), we may write Eq. (16) as The dispersion in 8, (6?) v, is defined by
3 RY+5R3 +2R? —3R,—4
(9)=_[ s 1 s ’ 3 l 2 : (%) y= 2 (@
2 lIRI+2R}{+9R} +4R3? —5R,~6 4N?
. . 9
=0 582762012 . . (17 — 2 zqu [Nygl - (18)
Thus, assuming the validity of the central limit theorem, 4N°Ay 43

the maximum number of arrangements of trimersona 2 X N
lattice occurs when the lattice is approximately 58.3% filled.
The open circles in Fig. 4 show A4[39,0] as a function of 6,
according to Eq. (4), i.e., the open circles are the exact occu-
pational degeneracy as a function of coverage.
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Utilizing the recursion, Eq. (4), and assuming that
(@?) y is of the form

a
—+02,
~ T
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TABLE 1. Showing the occupational degeneracy for trimers distributed on
a 2 X N lattice for various values of N and g.

2
—=<
(o)
-
~N
W
E-S
W
o
>

14 69 142 114 20 1 361
16 94 248 289 120 16 784

1 1 1
2 1 1
3 1 2 1 4
4 1 4 4 9
5 1 6 9 0 16
6 1 8 18 8 1 36
7 1 10 31 30 9 81
8 1 12 48 72 36 169
9 1

0 1

—

where a is a constant, we obtain
on=[(0%y —(0)5]"?
=0.472257 165N ~ V2, (19)

It follows that for large values of N, A[N,q] may be
represented as a Gaussian distribution

A[NG] =Ay,, exp{ —[6—(8)]%/20%}, (20)
where
Ay = [0.315028 641][2.147 898 904]”N‘”2. (21)

The solid curve in Fig. 4 has been calculated according
to Eq. (20) for N =39, and normalized with respect to
Aoy = 6.69X 10,

lil. L-PARTICLES

By the method outlined above, a recursion for the occu-
pational degeneracy of L-particles distributedona2 X N lat-
tice, can be obtained as follows [see Fig. 1(b)]: By a set
theoretic argument utilized to obtain Eq. (4); we obtain for
L-particles

[ TRIMERS

A{39,0]

OO0 C

FIG. 4. This figure shows the occupational degeneracy, 4[39,8], as a func-
tion of @=(3/2)(g/N) for trimers. The open circles show 4[39,8] accord-
ing to Eq. (4). The solid curve has been calculated from Eqs. (19)~(21).
Both have been normalized to 4,,,,, = 6.69x 10"
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A[Ngl=A4A[N—14] +44[N—-2,9—1]
The normalization is seen to be

(22)

Ay=3 A[Ngl=Ay_, +4Ay_, +28y_;. (23)
q

Again, assuming A, = kR”, it is found that
R®*—R?_4R-2=0,
which has the roots
R,=2.73205081,
R, = —0.732050 81,
R,=—1,
where
k, =0.577 350 266,
ky= —0.577 350 266,
ky=1.
Using Ay ==k, R ¥ for large N,
A, =[0.577 350 266][2.732 050 811~ .
Then the expectation of &, defined by

3
A [Ngq],
ZNANgq [Ng]

(24)

(25)

(26)

(O)w=c @) =
is
(6)=0.633 974 596 .
The standard deviation, o, defined by
oxn=[{0%y — (0)3]"?
=0.412 156 501 N —'/2, (28)

so that for large values of N, 4[ N,q] can be represented by a
Gaussian distribution:

(27)

A[N,0] =Ape, exp{ — (6 - (O))¥/25%}, (29)
where
A, =(0.838259 61)[2.732050 81]"N ~/2.  (30)

The open circles in Fig. 5 are the exact values of 4[39,0]
calculated from Eq. (22) and the solid curve has been calcu-
lated according to Eq. (29) for N = 39 and normalized with
respect to 4., = 1.42X 10",

IV. T-PARTICLES

For T-particles the recursion for the occupational de-
generacy is quite simple:

A[Ng]l=A[N—14] +4[N-24—1]

+4[N-34¢-1], (31)
with the normalization
Ay=Ay_ +A8y_2 +Ay_;. (32)

The roots of the cubic associated with Eq. (32) are
R, =1.83928676,

R, = —0.419 643 378 + i[0.606 290 729] ,
R, = —0.419 643 378 — i[0.606 290 729] ,

(33)

R. B. McQuistan and J. L. Hock 3019



L PARTICLES

A[39.0]

FIG. 5. This figure shows the occupational degeneracy, 4[39,8], as a func-
tion of &== (3/2) (¢/N) for L-particles. The open circles show A[39,8] ac-
cording to Eq. (22). The solid curve has been calculated from Egs. (28)-
(30). Both have been normalized to 4,,,,, = 1.42X 10’6,

with the associated coefficients
k,=0.435616 379,
k, = 0.282 191 146 — i[0.359 246 981] ,
ky=0.282 191 146 + i[0.359 246 98] .
Thus for large N
Ay=k,RY = (0.435616379)[1.839 286 761", (35)
(6}, the expectation of 6, is then
2

(34)

@)=y (@ =2 T oA [Ng]
=0.564 383 61 . (36)
In a similar way, the standard deviation becomes
oy = [0.505 185 901N ~V/2, (37
Then, for large N, A[ N,0] can be represented as
A [N,0]=Ap, exp{ — (6 —(0))*/20%}, (38)

where
A, =(0.688 007 293)[1.839 286 76]"N ~'/2. (39)

The open circles in Fig. 6 are the exact values of
A4139,8], as calculated from Eq. (31), while the solid curve
shows 4[39,0] as a function of @ as calculated from Eq. (38)
and normalized with respect to 4,,,,, = 2.31 X 10°,

V.COMPARISON OF STATISTICS

It is apparent from Eqgs. (4), (22), and (31), as well as
from the occupational degeneracy recursion for simple par-
ticles distributed on a 2 X N lattice,

A[Ngl=A[N-14] +24[N—1,4—1]

+A[N—-1g-2],

that the size, shape, and number of degrees of freedom of a
particular kind of particle are not obviously reflected in the
complexity of the respective recursion.
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T PARTICLES

A[39.0]

FIG. 6. The degeneracy A4[39,0] is shown as a function of §=2¢/N for T-
particles. The open circles have been determined using Eq. (31) and the
solid curve has been calculated from Eqgs. (37)-(39). Both have been nor-
malized to A,,,, =2.31x10°

It is interesting to note that the expectations of the cov-
erage for the three kinds of particles under consideration are
all greater than that for simple particles, i.e., are greater than
0.5. From these expectations,

(0)=0.582762012 (trimers)
(0 )=0.633 974 596 (L-particles) ,
{8 )=0.564 383 610 (T-particles) ,

and from the general expression for the expectation,

(6)=

s 3
AL Eq)qA [Nyl = N (9),

2N

where 5 is the number of sites occupied by each kind of parti-
cle, we see that although {(g) is greater for simple particles, it
cannot compensate for the fact that each simple particle oc-
cupies only one site.

While s is the same for trimers and L-particles, (8 ) is
greater for the latter because there are more unique ways to
arrange L-particles than trimers on a 2X N lattice. Even
though s is greater for T-particles, they cannot be arranged in
as many unique ways as can either trimers or L-particles.

The maximum number of arrangements for each kind of
particle (for N = 39),

A, =6.69x10"
A, = 1.42%10'*
Apax =2.31x10°

(trimers) ,
(L-particles) ,
(T-particles) ,

also reflects the fact that at any coverage, the T-particles
cannot be arranged in as many ways as either the trimers or
the L-particles. Here A4,,,, for simple particles on the same
lattice would be 2.73 X 10%2.

The standard deviation of the coverage for the three
kinds of particles considered,

R. B. McQuistan and J. L. Hock 3020



o=0.472257165 N /2
o=0.412 156 501 N /2
o =0.505 185901 N —!/2
are to be compared to
o=0.707 184 951 N ~%/2,

for simple particles. These values indicate that the compact-
ness and rotational freedom of the L-particles result in a
narrower distribution. It is also interesting to note that all
three more complicated particles have considerably sharper
distributions than the distribution for simple particles.

An examination of Figs. 4-6 reveals that the discrete
values of 4[39,0] for each kind of particle appear to be shift-
ed uniformly along the @ axis, relative to the corresponding
curves representing the continuous distribution. This indi-
cates that at N = 39, the values of the dispersions are more
accurate than the values of the expectations.

(trimers) ,
(L-particles) ,
(T-particles) ,

VI. CONCLUSION

We have determined recursions that enumerate exactly
the multiplicity of arrangement of indistinguishable trimer,
L-, and T-particles distributed on a 2 X N rectangular lattice.
Utilizing these recursions, we have calculated the expecta-
tion, normalization, dispersion, and continuous representa-
tion of the occupation statistics for each kind of particle.
Comparisons among the statistics for each kind of particle
and with the statistics for simple particles have been made.
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This paper presents a systematic and rational formulation of the electromagnetic theory of
deformable and fluent bodies swept out by singular surfaces that may carry their own
thermodynamics (interfaces). The treatment is based on the principle of virtual power for
finite velocity fields, which is so formulated that, when combined, for real velocity fields, with
the first principle of thermodynamics in global form, it yields directly the so-called energy
theorem both in the bulk and at the singular surface. Then the corresponding rates of entropy
production are deduced after introduction of the second principle of thermodynamics. The
various alternate expressions of the ponderomotive force, couple, and electromagnetic energy,
obtained in the bulk from the Lorentz theory of electrons are developed across the singular
surface by means of the generalized transport and Green—Gauss theorems. Finally, an
extension of the constitutive theory (well established in the bulk) is given to account for
surface phenomena in the case of an electromagnetic fluid. Thermodynamical restrictions are
discussed, and comparisons are made with previous works.

I. INTRODUCTION

In recent years consistent descriptions of mechanical
and electromagnetic continuous media have been obtained
on the basis of the energy method known as the “principle of
virtual power” (for finite velocity fields) rather than the
classical vectorial approach. Indeed, in 1973 Germain point-
ed out the interest of using this method for nonsimple mate-
rials such as those exhibiting a microstructure* and in 1980
Maugin showed that this method is particularly suited to the
description of the interactions of electromagnetic fields with
deformable bodies.’ Recently Daher and Maugin used this
type of formulation to describe purely mechanical contin-
uous media swept out by various singular surfaces and/or
lines, thus giving to that principle a range of application as
wide as that of the classical vectorial approach while, of
course, retaining all the advantages that it already owns and
adding some concerning the transversality conditions.*

In the present work, a description of continuous media
presenting singular surfaces and including electromagnetic
effects is given on the basis of the electron theory of Lorentz
(for the evaluation of forces, couples, and energies of electro-
magnetic nature), the principle of virtual power, and the
first and second principles of thermodynamics (for the ob-
tainment of field and constitutive equations). The subject
matter has been dealt with, at length, in the bulk so that
emphasis is placed here especially on surface phenomena by
the use of the generalized transport and Green—Gauss theo-
rems.

It is salient to recall that (i) the electron theory of Lor-
entz consists of a spatial averaging procedure applied to an
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assembly of nonrelativistic bound point charges contained
within a “microelement” and considered to be under the
influence of a Lorentz force®®; (ii) a singular surface may be
a strong discontinuity in the well known sense granted in
continuum mechanics (e.g., shock) or an interface between
two phases, which, in many cases, can also be conveniently
simulated by a strong discontinuity, but the latter then has
material properties in the same way as the bulk phases*’;
(iii) a virtual power is a linear continuous form on a set of
virtual velocities. The dual quantity to a “velocity” is a
“force.” The selection of a space of admissible velocities
fixes, via this duality, the degree of refinement of the descrip-
tion of forces acting on the system. For so-called internal
forces for which one ultimately needs to construct constitu-
tive equations we suppose that the principle of objectivity
applies, which, in turn, implies that the dual “velocity field”
is objective.? In particular, we note that when the medium is
spanned by a discontinuity, the principle of objectivity in-
duces an additional internal virtual power, which accounts
for the relative motion of the medium and the singularity.*

For simplicity, we restrict ourselves to the case where
only surface charges and currents are allowed to exist at the
interface, while all electromagnetic contributions may be
discontinuous across the singular surface. Surface electro-
magnetic fields have been considered by other authors’ using
a direct postulational approach of global balance laws, or by
the present authors® for specific applications.

The notation used is recalled in Sec. II. In a general
manner we use indifferently the direct (intrinsic) dyadic no-
tation or the notation of Cartesian tensors in rectangular
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coordinate systems. The Galilean form of Maxwell’s equa-
tions is given in Sec. III. This Galilean formulation is not a
severe limitation since material velocities encountered in
practical applications are considerably less than the speed of
light. The nonlinear electromechanical equations are devel-
oped in Sec. IV on the basis of the principle of virtual power
and the two fundamental principles of thermodynamics
written globally for the whole specimen. The first of these,
written in a rotationally invariant form, allows one to exhibit
the nonlinear contribution of magnetization and electric po-
larization to the Cauchy stress tensor of the deformable body
and it yields directly the transversality condition relative to
the surface stress tensor (while this is postulated in the clas-
sical vectorial approach). The local volume and surface
equations of balance of momentum, angular momentum,
and energy and the local statement of the entropy principle
follow from this global formulation when real velocity fields
are considered. Finally, the above-mentioned local equa-
tions are written in a particular case in order to be compared
to a previous work performed by Maugin and Eringen on the
basis of the vectorial approach.” In Sec. V we consider the
special case of electromagnetic fluids, for which constitutive
equations are constructed using the complete apparatus of
nonlinear continuum thermodynamics and its most recent
developments. It is shown that the bulk constitutive equa-
tions are exactly the same as the ones derived by Eringen®
while the surface constitutive equations generalize a pre-
vious work performed by Bedeaux, Albano, and Mazur.®

It is in the nature of the subject matter that the algebra
required be long and tedious. Because of the lack of space, we
have often indicated only the guideline of the derivation. To
render the paper self-contained, however, useful identities,
definitions, mathematical properties, and integral transfor-
mations have been recalled or derived in the Appendices.

All through the paper analogies or symmetries have
been made between bulk and surface equations insofar as
possible. In particular, it is shown, in Appendix A, that the
effective Lorentz and ponderomotive forces, written in
terms of effective charges and currents and expressed with
respect to a frame moving with the infinitesimal element of
matter, are more convenient to deal with than any other
alternate form. The above-mentioned remark takes its full
importance when dealing with more complex media such as
piezoelectric semiconductors where the electromagnetic
continuum is to be split in separate continua.?

Finally, we notice that the principle of virtual power
may be stated in two different manners, either following a
systematic procedure, where the electromagnetic tensor and
momentum are introduced through a so-called first gradient
theory,' or by the introduction of the electromagnetic
(ponderomotive) forces in the same way as gravitational
forces are usually introduced. The first, more fundamental,
statement is given in Appendix C while the second one,
which is more practical, is given in Sec. IV. Naturally, the
two alternate forms are mathematically equivalent.

Il. NOTATION

We use the classical notation of continuum mechanics.
The general nonlinear deformation of a body B between its
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reference configuration K at time ¢, and its present configu-
ration K, at time ¢ is represented, at fixed ¢, by the diffeomor-
phism

x; = X, (Xg,t) 2.0
where X, K =1, 2, 3, and x,, i = 1,2,3, denote the position
in rectangular coordinate systems—which need not coin-
cide—in K, and K, respectively, of the same material “par-
ticle,” the latter concept being understood in the usual con-
tinuous framework. The material body B occupies the
volume D-Z of Euclidean physical space E * at time £ and it is
spanned by a singular surface 2(¢). The boundary of the
volume is noted 3D-2 with unit outward normal n. The ab-
solute velocity of 2 (#), with respect to a fixed Galilean frame
R (the so-called laboratory frame of electrodynamics), is
noted v and the unit oriented normal to 2(¢) is i. The
boundary on dD of the singular surface, noted 9%, is
equipped with a unit tangent t and unit normal 7 in the local
tangent plane to X such that + = nXXt. The vector-valued
function ¥ is assumed to be sufficiently differentiable in its
arguments in D-Z so as to allow for the forthcoming manipu-
lation. The velocity field v, the direct motion gradient F, the
inverse motion gradient F !, the rate-of-strain tensor D, and
the rate-of-rotation tensor £ of particles at regular points in
D-Z or dD-2 are classically defined by

Ix
it P ={v}, (2.2)
0%, dX,
F= X; =——" F_1= X =._K.]
[ * aXK] [ T ax
(2.3)
(J =det F> 0 always) ,
D= {Dij =V =4(;; +v;,) =Djl} s (2.4)
and
=i, =v,, =4, ~ )= -Q}, 25
respectively, so that
Xk X ; =08y, XgiXp =0k, (2.6)

where 6; and &, are Kronecker symbols. The Einstein
summation convention is understood. Cartesian tensor nota-
tion and direct dyadic notation are used indifferently. In the
latter case the gradient operators are

v:{—“"-; i=1,2,3], Ve = {—‘3—; K=1.23}.
Ox; 0X

2.7)

The divergence of non-necessarily symmetric second-order
tensors is taken with respect to the /ast index, e.g.,

(divt), =1, . (2.8)

When material quantities are attached to the singular
surface 3, the corresponding fields are denoted by a super-
imposed caret “ » and the surface is said to be thermody-
namic; otherwise it is said to be free.* For instance ¥ is the
absolute velocity, with respect to R, of particles which be-
long to 2. As these particles cannot leave X, we obviously
have

2.9)
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while for a free singular surface we must necessarily set
F=wv4

The cut of the material body D by a singular surface
3(¢) in two regular regions D ~ and D *,* i being oriented
from D ~ to D T, requires the introduction of the following
notation:

vH(D *),
vt ={v if xedD *,
uniform limit of v(D *) for D * Sx—-»32* along#*
(2.10)
where H is the characteristic (Heaviside) function of a set.
The symbols [ -] and (- - - ) indicate, respectively, the jump
and mean value of their enclosures at 2(?), e.g.,

Al=A*—4-, (A)=}A4*+47), (211)
where A * are the uniform limits of the field 4 (regular in
D-Z but presenting a finite discontinuity at 2) in approach-
ing 2 on its two faces along its normals i £.

In the forthcoming development we need the balance of
mass, which cannot be deduced from the principle of virtual
power. Let p and 5 be the matter volume density in D-Z and
the matter surface density on 3, respectively. The total mass
conservation reads

dJ' 3J.
— dv + — da=0,
dt D-}:p v+dt 2p ?

where the “material” time derivatives are defined by

d 3 d_d
—=—=+4+vV, —=—+¥%V.
dt ot + dt Jt +
By using a “generalized” version of transport theorems? (see
also Appendix D), the global statement (2.12) is shown to

imply the following local ones:

-

(2.12)

(2.13)

izit’_+ pVv=0 inD-3, (2.14)

%+ pVi+[ml=0 onZ, (2.15)
where

m= p(v—v)i= p(v—¥)i (2.16)

is the so-called mass transfer across =. Equivalently, Egs.
(2.14) and (2.15) may be written as

%’;—+V-(pv)=0 inD-X, (2.17)
6%,3+6-(,69)+[m]=0 onX, (2.18)
where
6 a9 . J
O _ 2 D=2 4viD, D=@V, V,=P,V,,
8t at+ at+v BV, Vi=FV
(2.19)
Py=8,—hfh, Q= —}Vd
lll. MAXWELL’S EQUATIONS

LetE,B, D, H, J, ¢/, P, and M, denote the electric field,
the magnetic induction, the electric displacement, the mag-
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netic field, the total current, the volume density of free
charges, the electric polarization per unit volume, and the
magnetization per unit volume, all evaluated in the fixed
Galilean frame R at time 7. At internal points of the regular
region D-Z in K,, Maxwell’s equations are classically ex-
pressed by (¢ = velocity of light in vacuum; Lorentz—Heavi-
side units are used so that neither factor 47 nor vacuum

quantities €, and u, appear),
V)(E-i-ia—B:O, V-B=0, (3.1)
c ot
1D 1
VXH— ——>=—J, ViD=g,, 3.2
c Ot 9 (3.2)
with
P=D-E, M=B-H. (3.3)

On taking the divergence of the first equation of Eq.
(3.2) and accounting for the second equation of (3.2) one
obtains the equation of conservation of electric charges as

oq

— +V-J=0.

ot t ;

It seems convenient to define an effective charge ¢°f and
an effective total current, in R, as

aP

(3.4)

" =gq,—V-P, J°“=J+E+cva, (3.5)
so that Eq. (3.2) transforms to
vxB—LIE_ 1o gp_ e (3.6)
c Ot c

Let®,#,7, ?, F,and # bethesame fields as E, B,
H, P, J, and M, but referred to a frame moving with the
infinitesimal element of matter at time #, {the so-called co-
moving frame R, (x,t)]. In the Galilean approximation,
which is sufficient for the present purpose, we have the fol-
lowing transformation laws between R and R, (x,£)>%:

& =E+ (1/c)vXB, 3.7
#=B-—(1/c)vXE, (3.8)
K =H—(1/c)vXD=% — ., (3.9)
£ =3—qmv, (3.10)
P =P, M =M+ (1/c)vXP. (3.11)

The lack of symmetry between the last two formulas
reflects the Galilean approximation. The vector field & is
usually called the electromotive intensity while # is none
other than the conduction current.

On account of (3.7)-(3.11), the bulk equations (3.1)
and (3.2) and (3.4) take on the following “Galilean”

form>510;
VX& + (1/c)B=0, V-B=0, (3.12)
VX# — (1/e)D=(1/0) f, VD=gq,, (3.13)
and
D+ V- f =0, (3.14)

where the convected-time derivatives for a vector A and a
scalar g are defined by

N. Daher and G. A. Maugin 3024



A=FA _ AVIV 4 A(TY)
dr
=§aﬁ+v(v-A) + VX (AXY), (3.15)
_ da
.@a=—+aV-v. (3.16)
ar

In the same way as in Egs. (3.6), we may write Eq.
(3.13) in the following alternate form:

VXB — (1/c)ﬁ=(1/c)/°“, E =4,

where the effective conduction current # * has been defined
as

3.17)

»*
FI=F +P+ VXA .

On account of (2.9), and after some calculations and
manipulations, the jump conditions at the interface associat-
ed with the bulk equations (3.1), (3.2), (3.4), and'(3.6) in
R and (3.12)-(3.14) and (3.17) in R, (x,t), transform,
respectively, to>® in R,

AxX[E] — (1/¢) (¥4)[B] =0, [B}a=0, (3.19)

ax[H] + (1/¢)(#8)[D] = (1/¢) J, - [D}d =§;,, (3.20)

(3.18)

%af +Vi+[01=0 (3.21)
and

X [B} + (1/¢) (#-h)[E] = (1/¢)J",

[E}f = §* » (3.22)
inR_(x,?),

iix[if+(l/c)Bx(v—v)]- , [Bli=0, (3.23)

aX[# — (1/0)DX (v — D] = (1/¢) 7,

[D}4 =4, (3.24)

D+ 97 +10]= (3.25)
and

X [# — (1/0)EX (v — )] = (1/c) F°",

[E}d =47, (3.26)
with |

N e

ga=2—t-a+a ¥, (3.27)

Q=(J—gM4, (3.28)

F=3-a,

/’“ /+nx[Px(v—v)]+cnx[I] (3.29)

¢ =g, — [Pl4,

I = J — (#)[P]+ciix[M], (3.30)

where 7, J, 4, 7%, 3, and §°¥ are the surface conduction
current, the total surface current, the surface density of elec-
tric charge, the effective surface conduction current, the ef-
fective total surface current, and the effective surface density
of electric charge. In writing the above jump equations we
have assumed that there is neithersurface polarization den-
sity nor surface magnetization density on 2 (z).
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The boundary conditions on dD-X are obtained by con-
sidering a singular surface that is material (v =¥ =wv).
Thus Eqgs. (3.23)-(3.25) yield

nX[#]=0, [Bln=0 (3.31)
nX[#]=(1/¢) 7, [DIn=4q,, (3.32)
D4 +VF +[Ffln=0 (3.33)

We easily notice that Egs. (3.27) and (3.28) are imme-
diately deduced from Maxwell’s equations written in
R, (x,t). This justifies the introduction of electromagnetic
fields related to the comoving frame R, (x,).

IV. THERMOELECTROMECHANICAL EQUATIONS
A. General principles in global form

The thermoelectromechanical balance laws (with the
exception of Maxwell’s equations recalled in Sec. III which
are not of a mechanical nature) may be deduced in an elegant
manner from three general principles written in global form
for the material volume D swept out by the singular surface
2. These are the principle of virtual power and the first and
second principles of thermodynamics. We refer the reader to
a review paper’ for general features and the manner to ac-
count for electric polarization and magnetization effects in
the presence, or absence, of electromagnetic ordering and to
Ref. 4 for the purely mechanical case of singular surfaces and
interfaces. ) . . i

Wecall‘P,,'P,,'P,,’P.,"P,,K,K,E,E,N,N, U*™, Q,,
and ./, respectively, the total power of inertia forces, the
total power of internal forces, the total power of *“volume”
forces, the total power of contact forces, the total power of
prescribed forces (of any type, in the bulk, on surfaces or on
lines), the total kinetic energy of the volume (regular re-
gion), the total kinetic energy of material points belonging to
the singular thermodynamical surface, the total internal en-
ergy of the regular material region, the total internal energy
of the singular thermodynamical surface, the total entropy
of the regular material region, the total surface entropy of
the singular thermodynamical surface, the total electromag-
netic energy of the electromagnetic fields on D-Z on account
of magnetic dipoles, the total rate of supply of heat, and the
total rate of supply of entropy. In the sequel a superscript
asterisk will indicate a virtual field or the value of an expres-
sion in such a field (which is not, in general, a solution of the
actual problem).

1]
1. Principle of virtual power

In a Galilean frame and for an absolute Newtonian
chronology the total virtual power of inertial forces of the
system balances the sum total of the powers of internal and
external forces impressed on the system for any virtual ve-
locity fields. With the above notation, this reads

PE—'PHt P* | PE (4.1)

2. First principle of thermodynamics

The time rate of change of the total energy contained in
D-Z and on X is equal to the sum of the power developed by
prescribed forces, the energy supply by radiation in D-3 and
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on %, and the flux of energy through the boundaries dD-X
and 4. This may be stated as

d

(K+E)+—~(K+E)+d Us="P, +0,.

4.2)

3. Second principle of thermodynamics

For any thermodynamical process the time rate of
change of the total entropy of the system is never less than
the sum of the total entropy supply and the total flux of
entropy through the boundaries. Mathematically, this reads

d d &

dt N+ dt N>

For a general magnetizable, electrically polarized, heat
conducting deformable conductor, the expression to be car-
ried out in Egs. (4.1)-(4.3) are given, or constructed, as
follows:

(4.3)

dp, .
+ ”ﬁ—+lm(v.-—ﬁ,-)]] o* da, (44)
s dt
Pr= — p?dv—f(’p?+13?)da, 4.5)
D3
d
'P:=f [(ﬁ FoywE + p¥, (”)
D.x dt
+ pB, (%) ]dv+f(}1 + fmyorda, (46)
z
'P:=f (T,.+T,=m)v;.-da+f T, o%dl, (4.7)
aD-= (:>3
‘P, —J fv,dv+ Tvda
+ f Fb, da + f 1.5, dl, (4.8)
z (>3
Q,,=f phdv—f gnda
D-Z ID-X
+fpizda—f qrdl, (4.9)
p i)
N = podv — dnda
D-Z aD-Z
+Jﬁ6‘da—f brdl, (4.10)
p >
and
k= Lovdr, k= Lpvda, (4.11)
Dz s 2
E=| pedy, E=f péda, (4.12)
D-Z b3
N=J pndv, N=| phda, (4.13)
D-X z
veo=|[ L(E2+B2—24B)dv. (4.14)
D-Z
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In Eq. (4.5) we have introduced the following quanti-
ties:

pr= tjD;‘;—pLEi(DJ m)* "PLB,‘(-DJ,“.')‘, (4.15)
zp,‘=[~7_,(vl _ﬁ,)*], (4.16)
and

pr=6,D2, (4.17)
with

n=P/p, w=.4#/p, (4.18)
and

da
(D,a), =T;_ Qa,, (4.19)
Dij = ﬁ(i,j) E%(ﬁi,j + ﬁ,;i) . (4.20)

In the above set expressions, f and f are volume and
surface forces of purely mechanical origin. Here 7 and T
are surface tractions across the singular surface and on the
boundary dD-Z, while T is a lineal traction. Here e and & are
internal energies per unit mass, 7 and 17 are entropies per unit
mass, and q and § are the heat flux vectors. The symmetric
tensor o, is called the intrinsic stress tensor (not to be mis-
taken for the Cauchy stress tensor to which it is only a sym-
metric contribution®); &, is the corresponding intrinsic sur-
face stress tensor (an essentially two-dimensional geometric
object in the absence of so-called membrane forces*; see, be-
low, the transversality condition). Constitutive equations
will have to be constructed for these two tensors. Here “E,
and “B, may be referred to as the local electric field and the
local magnetic field. They reflect the interactions that take
place between the polarization field and the matter and the
magnetization field and the matter. The quantities & and g, ¢
and 4) are usually related to 4, h, q and §and the thermodyn-
amxcal temperatures 0 and 8 (>0, inf@=0; i >0,
inf & = 0), where fis the temperature field attributed to the
surface by, e.g., 6 = 92/97. These relations will be specified
later on. Finally, f*" is the volume ponderomotive force in
the Galilean approximation and T°™ and f°™ are the corre-
sponding electromagnetic forces at the boundary of the body
and at the interface 3. Before specifying the latter, we refer
the reader to Ref. 3 or Appendix C for the construction of
expressions such as (4.6) and (4.15) and to Ref. 4 for the
construction of expressions such as (4.4) and (4.16).

According to a semimicroscopic approach we have
(Appendix A)"!

£ = g8 + (1/0){F*7 — (YX.M}XB
+div(& @ P) + (VB)-#

= div ™™ — % in D-2 4.21)
F =8 + (1/0){ £ — cAxX[-#]} X (B)
+ [# o PPii + ({A4)[B])-
= [t + G®¥]fi across =, (4.22)
T = — (" 4+Gev)n ondD-2 (4.23)
where
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t;"=EE; +BB +&,P,— 4B

—(E* + B — 2.4-B)5, (4.24)
G=(1/c)EXB, & = (E)+ (1/c)¥x(B). (4.25)
The quantity

Ci=tip=%,P)+B, 4, (4.26)

is the tensor dual of the ponderomotive couple. Notice the
symmetry between f°™ and £ in Eqgs. (4.21) and (4.22).

B. Local electromechanical equations

On assuming that Eq. (4.1) remains good for any of the
virtual fields, v*, ¥*, ¥ * (at 2), D¥*, (dw/dt)*, and (dp/
dt)* and any element of volume, surface, and line, we obtain
at once, after use of the generalized Stokes’ theorem account-
ing for the presence of a discontinuity surface (Ref. 4)—see
Appendix D—the following local equations:

av; .

Py =tus+ i+ [ DI, (427)

T,+T™=t;n, ondD-X, (4.28)

A ai}i A

PE“*‘ [m (v, —9,)]

=71+ (V, +208))5, + J; + /7 onZ,

(4.29)

T,=&,7, alongdz, (4.30)

JTE=tiFf A on 2, 6,4, =0 onZ, (4.31)

LE, + #,=0, !B,+B,=0 inD-3. (4.32)

The a priori nonsymmetric Cauchy stress tensor #; has been
defined by
The local statement of the balance of angular momen-
tum is contained in the above mentioned equation. By taking
the skew-symmetric part of Eq. (4.33) we obtain
tyy="EP; + "By M), . (4.34)
On using Egs. (4.31) we can rewrite Eq. (4.29) in the
following more conventional form:

db, . oA e
ﬁ"d_t""[m(vi—vi)]:[tij]nj +Voy+ fi+ [" onZ.

(4.35)
C. Local thermodynamical equations

If we combine Eq. (4.1) written for real velocity fields
(no asterisks), with Eq. (4.2) and account for the demon-
strable electromagnetic energy identity (see Appendix B),

%U’"’: - Dz[f‘“’-v+ p&’%‘tz
+ pn‘:—*t‘ + /-&”] dv (4.36)
— (T*™v 4 #n)da
oD-X
— [ o+ 18 + I, - 81 da,
with
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S =cEXH,

TT=IT+G,"}J—2Y;—£(E2+32—M'B)8y,

28 =(&,)D, + (H)B, — ((§)D + (¥)B)S,,
(4.38)

where the first of these is Poynting’s vector in R, (x,t), we
obtain the following global expression for the so-called ener-
gy theorem:

A

d d

(4.37)

IE+-d-;E+K,x(2)+Pi=Qh +Qern’ (4.39)
where we have set
: dK 31“:) f .
Ka(2)=|—+—)— ‘Pa = 2 -9 ’
(4.40)
Ou=[ s&dvs| smda+ | j(8)da
D-Z OD-X z
+ J [ (v; — D)4, da. (4.41)
z

The quantity defined by Eq. (4.40) is the so-called ex-
cess rate of kinetic energy.*

Accounting for generalized transport theorems and bal-
ances of mass, from Eq. (4.39) we deduce the local forms of
the energy theorems as

P%=Pi+/-$’+ph—v-ﬁ inD-X, (4.42)
, dé s L3 N
P = Pit7pi+ FHE) + ph =V

+ [ﬁjm(vi —-b) — @j]ﬁj

—[m{(e—2) +1(v—%)°}] onZ, (4.43)
where we assumed the transversality condition

Gi=0 (4.44)

and we have set

It remains to exploit the global inequality (4.3). To that
purpose we assume that o, , ¢, and & are given by

o=h/6, 6=h/0, b=§/6, b=a/6. (4.46)

Only the volume entropy flux differs from the usual ra-
tio of the heat vector to the temperature, which means that
nonsimple thermodynamical processes are involved (com-
pare Ref. 6, p. 129). Accounting for (4.46), the local forms
of (4.3) read

06 %’%> oh —Vii+ V8 inD-Z, (4.47)
20 %’t’-> oh— Vg + 90
—[m(p—7)8]—[6d)Fa onZ. (4.48)

D. The Clausius-Duhem inequality
. Introducing the Helmbholtz free energy densities ¥ and
¥ by

V=e—70, V=2—170, (4.49)
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and accounting for Egs. (4.42), (4.43), (4.15)-(4.17),
(4.31), and (4.33), from (4.47) and (4.48) we areled to the
Clausius—Duhem inequalities in the form

av d@) dr, du,
t & — B; ——
(dz+"d o+ pE ot PR
+ FF — 6VO50 inD-S (4.50)
and '
—p(”fi‘f+u~‘§-‘?—)+agbu+<$>/ $¥0

+ [(tnj +Tizjm)(v, - vi) —¢](0— 0)]nj

—[m{n(0—8) + (¥ —¥) +3(v—-H?}>0.
(4.51)

Finally, if we perform the following Legendre transfor-
mation on ¥:

Y=¥_—Fuw—By, (4.52)
define the new symmetric stress tensor ?,.j by
t,=0; —P,&;, — M B, + (P& + M B)S,
=t;, — P&, — 4B, + (P& + #-B)5;, (4.53)

and use the definition (3.15) of a convected time derivative,
we can rewrite the volume inequality (4.50) in the useful

equivalent forms

ay de) d¥,
t.v,, — P, ——
(dt -H?d by — 4 dt
dB,
— M~ B — 4.9950, (4.54)
dt P
or
- L
—p(ﬂ—{—qﬂ)-}—thij —P, fg",
dt
—M B, +&F - -g—.vo>o . (4.55)

On account of the second equation of (4.31) and after
some decompositions, Eq. (4.51) yields

—p(‘:’ +7)%—6—)+a’gl)§,+(8’)f—-r‘V6

+ 6 (Gsy [1/6] + 813 1((1/8) — 1/89)

- (Tf(m ) vl + [T"'(a}l'((v) — )30, (4.56)
where we have set
bij = e(jf’n ,
g =ah, T1, =Tri, (4.57)
and
g =1t; + 15" — AS; (4.58)
A=p{p(@—) + (¥ —¥) +4v—D7}. (459

If we consider the case where the only quantities at-
tached to the mterface are of electric nature such as g, F.on
setting ¥ = vand  ~! = (6 ), see Ref. 4, we have the fol-
lowing balance laws: Conservation of mass,

’f}p"? + pV¥v=0 inD-3, (4.60)
[p(v—v)}a=0 across 2(1); (4.61)
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balance of momentum,
dv, )
Py =t t it fi" inD-Z, (4.62)
Lpvi(v; —v;) —t; — 47 + Gv;)}A;, =0  across 2(2);
(4.63)
conservation of energy,
de dmw d
Pi—tgu'*'Pap’ +PB d':
+ & —-V4+ ph inD-X, (4.64)

[{1pV* + pe+ }(E* + B> — 2.4-B)Hv, — v}
-y +t7+ G+ L+ 418, =0 across3;

(4.65)
and entropy inequality
p 20 1\ .
L ph—vay - -v( ) 3, (4
dt> (p q) — § 5 in D-2 (4.66)
[on(y; —v;) + (1/6)g17;>0 across . (4.67)

The above-mentioned balance laws are the ones ob-
tained by Maugin and Eringen from the vectorial approach
[see Egs. (5.8)—(5.16) in Ref. 5]. In order to have the same
notation, we must replaceeby e + p*Band gby —q.

V. CONSTITUTIVE EQUATIONS

For illustration purposes and further comparison with
other works it is salient to consider the special case of elec-
tromagnetic fluids, where we assume a priori that all depen-
dent functions ¥, 1, t;, Py M, F i, and §; may depend on
the same set of variables (Ref. 6)

p~'.D;,6,V6,% B, (5.1)

A similar assumption is used at the interface where the
set (5.1) is replaced by

p~.D,,6,V6. (5.2)

Thus ¥ is assumed to depend on the set (5.1) while v
depends on the set (5.2). On computing d¥/dt and dv/dt
and carrying the results in Egs. (4.54) and (4.56) that must
be satisfied for all independent thermodynamical processes
[d6/dt, Q;, (d/dt) (Dy), (d/dt) (V8), (d/dt) &,
(d /dt) B;], we obtain the following.

(i) InD-3
W __o ¥ __o 4, =0, (53)
3(D,) ERZ)

and

v v v
= po 2 4= pT . (54
= "0 Pz, Popr  OY

while there remains the following dissipation inequality:

T'=2,D, — (1/6)§V0 + £-€30, (5.5)
with
v
Dt,}; = tij -+ paij’ == e ———ap_l (5-6)

From the first two equations of (5.3) we see that W is
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independent of D and V8, while the third one states that the
stress tensor must be symmetric. If we recall the definition of
t; we see that we must have

Py + 4B =0. (5.7)
() On3
v M . v
=— =0 =0, 7= ——, 5.8)
ab,y v T T (
and
=25,D, — (1/8) 498 + 7 &)
+6{¢ G161 + [ a6 J((1/8) — 1/6)}
+ (TF gy Y]+, J(v) — 9)>0, (5.9)
with
A A s . v
25y =6y + Py b= ~ (5.10)
Ty =Try + (p/p) B8; . (5.11)

After decomposing Eqgs. (5.5) and (5.9) into traceless
tensors, vectors, and scalars, we are led to

I‘_.(,Dt,,oD,j —(1/0)qVe + & + ”tDkk>0, (5.12)
I‘_oa,,o i — (1/8) §V0 + F( &) + aDkk

+ (T Yean Thian + [ Jhan (€7 = P

+ (T Yo ] + [Fam I (0 ) — Biay )

+ 0{ddw) 11/61 + 13 1((1/8 ) — 1/8)}50,

(5.13)
with
A,}=0Ag +145;}: 04 =0, A=§Akk’
Ay=ody + APy, oAy =0, A=4d,, O
A=A, +4, i, (5.15)

where the subscript tan indicates the tangential component
and

(5.16)

For simplicity we consider linear relations between the
generalized fluxes and thermodynamical forces occurring in
the entropy production. Taking also into account the tensor-
ial nature of the various quantities, the two-dimensional iso-
tropy on the surface, and the isotropy in the bulk we obtain
the following linear laws.

A A
T(an) =1',-jn,-nj .

In D-3X,

oty =2uoDy, Pt=kDy , (5.17)
—-4=K,V9+K,%, (5.18)
£ =08 +0,90. (5.19)

On using the first equation of (5.14) with (5.17) we
obtain a more conventional form for the dissipative stress 2t
as follows:

Dy, = ADy8; +2uD, , (5.20)
with the following relation:
k=3A+2u. (5.21)

From the entropy inequality (5.12) it is clear that
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K >0, 030, 4K,00~ ' — (K0 '+ 0,)%50,
k=31+42u>0, u>0. (5.22)
N On X we have (i) the traceless part of the tensorial quan-
tities
By =YaoDy ;
(ii) the surface vectorial quantities
—a=RK 90 + Bo()n + Ksl¥an + Bo((9) = D
F =08 + 520 + 53 [Vhar + 54 ((V) = D,
(") = @1[Vhan + 820 + 838 )00 + G ({V) — Do

[T‘F(ﬁ)] = Bl((v) -—e)tan + Bzea

(5.23)

+ Bl 8)an + BalVhan ; (5.24)
and (iii) the scalar quantities,
g = k\ Dy + k[1/6] + ks ({1/0) — 1/8)
+ k«lv(&)] + ks ( W) — 0y >
(Gew) =1[1/6] + b,y + 5,((1/8) — 1/B)
+ ?4["(&)] + ?5(("@) ) =bdm)
Ldm) =i, ((1/0) — 1/8) + Dy + sl1/6] 5 s,

+ iglveay ] + Ms((eay ) —Bay)
(Fam ) =Hlva 1+ ?'Z-bkk + #,[1/6}

+7,({1/6) — 1/8) + #5((vin)) — Dny) »
[Foml=8(vs) —dpy) + §2i)kk

+3[1/6] +3,((1/8) — 1/8) + %[v 1 -

On combining the first equation of (5.25) and account-
ing for the second equation of (5.14) we get

26, = ADu Py + 3D, + ko[1/6] + ky((1/8) — 1/8)
+ 124[1’(&)] + ’;s((v(») > =By, (5.26)
with

ky=A+ 4. (5.27)

In the same manner as in the bulk, the entropy inequali-
ty (5.13) places restrictions, which we do not discuss here,
on the scalar coefficients introduced in (5.23)-(5.25).

In some particular situations such as when we have no
surface mass density ( p = 0), it is necessary to define the
energy and entropy per unit surface, hence on setting

W= p¥, =57, (5.28)
and accounting for mass conservation we get the following
transformation:

. d¥ dzwv
. — \I} —
p dt ] dt

A a 2\1[ #
‘+’ EWP{]D‘] - dt + Z‘PDM P

(5.29)

and the Clausius~-Duhem inequalities (4.51) and (4.56)
take on the following alternate forms:

i 3«‘9)
(dt N
+ (8; —*WP)Dy + (&) 7 — V8
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+ [ty + 7 (0~ ;) — ¢,(6 — D)),

— [m{n(6—8) +¥ + }(v—v)?}>0 (5.30)
and

z

- (ddt‘l’ + 29 ‘;0) +aijD,, + (%) /— (4/0)Vé

+ 9(5(&))[1/0] + 603, 1({176) — 1/6)

(T vl + [, ((v) — $)50, (5.31)

Gy =06, +3pPy, p=—p¥=-32¥, (532

7y =Try + L8, . (5.33)

P

Notice the perfect symmetry between (5.32) and (5.33)
and (5.10) and (5.11). Although Eq. (5.33) seems to de-
pend on j, if we decompose “r; with the help of Eqgs. (4.58)
and (4.59) and the first equation of (5.32), we immediately
notice that 77, is independent of 5. Equation (5.33) is given
in the above-mentioned form only to allow for the analogy
with (5.11).

AstoEgs. (5.2), (5.8), and (5.9), they will be replaced,
respectively, by

D, 6 %9, (5.34)
) )2 =
0¥ _o I¥ _o z3p=_¥ (535
aD, a(ve) a6
and

p=5,D, — (W/6)¥0 + F«(&) +8(qu)[1/6]
+01gn1((178) — 1/8)

+ (7?(») )'[V] + [T;(h) I({v) —9)>0. (5.36)

Notice that Eqs (5 35) and (5.36) are sirnilar to (5.8)
and (5.9) where ¥, > ,,, and "7, have been replaced, respec-
tively, by *¥, %5, and 77 7;. The subsequent transformations
and the construction of linear dissipative constitutive laws
lead formally to the same results as (5.23)-(5.27), and
hence to the same conclusions. This new formulation allows
one to treat the case where we have no surface mass density,
without the ambiguity concerning the definition of the sur-
face energy density. However, we have lost some symmetry

between the equations obtained in the bulk and at the inter-
face.

Comparison with previous works: The bulk constitutive
equations (5.17)—(5.22) are exactly the same as the ones
derived in Eqs. (10.24.5)-(10.24.8) and (10.24.13) and
(10.24.14) of Ref. 6, while the surface dissipative equations
(5.23)-(5.27) generalize the expressions obtained for a
purely mechanical interface with no mass transfer in Ref. 4.

Indeed, if we disregard electromagnetic effects and mass
transfer (m =0, i.e., v§, = D) =vG, ), which would be
the case of an immiscible single-component nonelectromag-
netic fluid, the dissipative part of the Clausius—Duhem in-
equality at the interface reduces to

P=86,0D; — @0V + (3(s) YranI¥an
+ [o(n)]m'(<v> —~¥)an + d&bkk

+0(g, Y[1/6] + Blg s, 1178 ) — 1/8)50. (5.37)
where we have set

86, =19, —%P;, 6=} (tr’s) (5.38)
and

Oy =oii.

On setting up linear relations between the fluxes and
thermodynamical forces occurring in the entropy produc-
tion (5.37) we get

G, =22,D, , (5.39)

—8="K,V0 + 3K [V}n + K5 ({V) ~ Dpn 5

(O a Yan = 2@ 1[V)un + 2a, V0 + 2o, ((v) — Vean 5

(5.40)

[0 Jan = "B1(V) = Dhan + 78,70 + 28, [¥)saa
and

UG = 2k, V0 + 2k,[1/6] + Tk,({1/6) — 1/8)

(Geny ) = 20[1/6] + 2L,V + 21,({1/6) — 1/8) ,
(5.41)

9] =>m, ({178 ) — 1/8) + Zm,V+% + 2m,[1/6] .
On account of (5.39)-(5.41), Eq, (5.37) yields

—x= 4 az) ([v]w,-eé)

|
2oyody +— K987+ % ([Fhan ) + B — D + (’9‘
K,
+(T+

2 ~
+im, ((%) - %) + (k, + L) ($-9)[1/6]

+ ks + 2m,) (V) ((1/0 ) — 1/0) + (Bly + Zm,)[1/6)({1/8) — 1/8)>0.

This inequality must be invarient under time reversal.

Since the quantities [v], (v) —~ ¥, and V- are odd under
a change of time direction and V8, [1/6], and (1/6 ) — 1/6
are even, we can easily notice that we must have the follow-
ing restrictions:
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‘ﬁz)[uv) — D V0] + Cas 4 %B5) [[Vean* (V) = D ] + Tk, (F0)2 + 21, ([1/6])?

(5.42)

—2K,/6,

2k:., = — Emz .

*a,= — EKZ/Q, B, =
2k2 = - 212’
Other restrictions that we do not develop here are im-
posed through Eq. (5.42), more particularly on the sign of

(5.43)
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the scalar coefficients. At this point it is interesting to notice
that Eqgs. (5.39)-(5.41) subject to (5.43) are exactly the
same as the one derived in Ref. 7.

Notice that if we neglect surface tension and surface
forces (6; =0, 7, =0) in the present case the surface equa-
tion of motion reduces to the usual jump relation

[oy)8, =0 (5.44)
and the third equation of (5.40) may be written as
9= (v) + (1/28)){38,V0 + 28,[v]}. (5.45)

Since b, = v, and the terms within the curly brack-
ets are linear in the thetmodynamic forces and therefore
small close to equilibrium, at a zeroth-order approximation
one may therefore use

v=(v). (5.46)

This justifies the choice (5.46) in some particular situa-
tions. By the way, if we consider the electromagnetic case
with the above-mentioned simplifications that lead to (5.44)
we obtain from the equation of motion at X,

so that
[T (V) —9) = —g(&)((v) = %) (5.48)

and the Clausius-Duhem inequality (5.31) transforms to

- S\P aé . N .
- (ddt +*n 7;) + (6 — *¥P;)Dy — (4/6)V8

+04gen, Y176 + Blg s 1(1/8) — 1/8)

+ ("1 Y [V) + (&) en*> 7 >0, (5.49)
where
= () =D =T—g(v). (5.50)

We easily notice that Eq. (5.46) is included naturally in
the Clausius—Duhem inequality (5.49), through the defini-
tion (5.50). This proves the validity of the approximation
(5.46), for electromagnetic phenomena, this time, and di-
rectly from the Clausius-Duhem inequality and not bor-
rowed from thermodynamical arguments through linear
laws.

APPENDIX A: EFFECTIVE LORENTZ FORCE,
PONDEROMOTIVE FORCE, AND ENERGY OF
ELECTROMAGNETIC FORCES IN THE PRESENCE OF A
SINGULAR SURFACE

1. Before evaluating the electromagnetic forces and
their energy it is necessary to introduce the following
identities, definitions, and mathematical properties

(i) On account of (3.5), (3.10), (3.18), (3.29), and
(3.30) and after some calculations we obtain the following
identities:

¢/E+ (1/c) IXB=¢,& + (1/c) f XB, (A1)
4 (E) + (1/¢) IX(BY=4,% + (1/0) F X(B),  (A2)
¢TE + (1/c)ITXB=¢""® + (1/c) £*XB, (A3)

FT(E) + (1/c)IFX(B) =§"F + (1/¢c) F*"X(B),
(A4)
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and
[4/E + (1/¢) IXB]w |

= [4,% + (1/¢) £ XB]v=JE— £-&,
[3,(E) + (1/¢) IX(B)]v

= [4,% + (1/c) Fx(B)]v= J«E) — 7%,
(A6)

(A35)

where & has been defined by
& = (E) + (1/c)¥x(B) . (A7)

It is useful to notice the following correspondence between
quantities in the bulk and at the interface:

G—bp I3 F-F, ¢T-FT IT-I,
Fs FE, voi, Bo(B), E~(E).

(ii) Some mathematical properties are as follows:
(AXB)-(CXD) = (AC)(B-D) — (AD)(BC),
(AXB)XC = (AC)B — (BC)A,

(A8B)

(A9)
AX(BXC) = (AC)B - (AB)C,
(AXB)-C=A«(BXC),
and
[a:5;] = [a;14b;) + {a:)(b;1,
(a;b;) = (a;}{b;) + Llallb],
[aibjck] = [ai]<bj>(ck> + (ai>[bj]<ck> (A10)

+ {a;) (b)) ci ] + la][B;]ec ],
(aibjck> = + i{<ai)[bj]["k] + l[ai]<bj>[ck]
+ [ai][bj]<ck>} + (@) (b)) {c,) -

2. Effective Lorentz force

(i) The expression for the effective Lorentz force in the
bulk (reminder) [see Eq. (3.16), Ref. 5] is

Lfsdivt"——aa—tq=q°"$+-1-/"“xB, (A11)
4
with
tg =E,E, + B,'Bj - i(E2 + Bz)lsyy G= (I/C)EXB .
(Al2)

(ii) We evaluate the effective Lorentz force at the inter-
face. On account of Maxwell’s equations at the interface of
Eq. (A7) and the first equation of (A10) and after some
long and rather tricky calculations, we obtain

L=+ Geilh=0"F + (1/c) FTX(B). (Al3)

3. Expression of the ponderomotive force in the bulk
and at the interface

On account of (A11) and (A13) and of the identities

fom =, f+dive™, f=, f+[C"]4, (A14)
where
t"=%,P, — 4B, + #HBS,, (A15)
we are led to
£ =g + (1/c)( T —cVX.A)XB
+div( & eP) + (VB)-#, (A16)
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fo= = §7& + (1/¢)( FF — cix[A]) X (B)

+[% @ Pl + ({4 )[BDA, (A17)
or equivalently
£ = ¢*E + (1/¢) (J*F — cVXM) XB
+div(E® P) 4+ (VB)M + Rfem (A18)
fo= = §°(E) + (1/¢) (3 — ch X [M]) X (B)
+ [Ee Pl + ((M)-[BDA + %™,  (A19)
with
Rpem — (1/c)div{(vXB) e P — (vXP) 2B
+ [(vXP)-B]I}, (A20)
Rfem — (1/¢)[(vXB) ® P — (vXP) @B
+ [(vxXP)BlI]i. (A21)

Remarks: (a) Note that Egs. (A16) and (A17), where
the electric field, the effective current, and magnetization are
expressed in the comoving frame R, (x,¢), are more conven-
ient to deal with than the equivalent Eqs. (A18) and (A19)
where the above-mentioned fields are expressed in the Gali-
lean frame R; . This justifies the use of (A16) and (A17) in
the present paper instead of (A18) and (A19).

(b) It is easy to notice that Eqgs. (All), (Al3), and
(A16)—-(A21) do not violate the correspondences given in
(A8), so we have an absolute symmetry between the bulk
and the interface.

(c¢) If we decompose the effective quantities and com-
bine them with ?f.j‘“ in Egs. (A14) we obtain

*
f° =¢,& + (1/c)( £ +P)XB

+ (PV)& + (VB)}A , (A22)
fm =48 + (1/c)( F +AX[PX (v — 9] X (B)
+ [ £1(P)+id)

+ ({A ) [BDi + 8([P]d), (A23)
with
8=(&)— & = (1/c)({v~ ¥)XB)
= (1/e){({v) = NI X(B) +iVIX[B]}. (A24)

Equations (A22) and (A23) show the existence of addi-
tional terms at the interface, which vanish only if v = ¥.
Hence, in general, the absolute symmetry is lost, and this will
complicate the evaluation of the electromagnetic energy
identity, as will be noticed later on.

4. Energy of electromagnetic forces

We consider the case where the electric quadrupoles are
neglected as well as surface polarization and magnetization.
The calculation follows the same line as the much simpler
one performed in the previous section or Refs. 5 and 6. This
cannot be reproduced because of lack of space.

On account of (A9), (A10), (Al4), and Maxwell’s
equations, it is possible to evaluate the right-hand side of the
following equation [obtained in Ref. 5 from Eqgs. (3.58) with
a notation similar to that used in (4.2)]

3032 J. Math. Phys., Vol. 27, No. 12, December 1986

v+ 58 =[(t] + Gd))w, — Y,

—JE*+B)(y, — )]A; . (A25)
After long and rather tricky calculations we obtain
v+ FOE) = fi+ FT(E) +F,  (A26)

with
F= [Gii)j(vi - i):) - 2{(E_ (g))iE[i(V ‘e)j]

+ (B—(#))B;(v— ;1A , (A27a)
or equivalently
F=[((+B)G;, — 2{(E — (&)) ;4,,E,
+ (B —(#));#; BN, — )], (A27b)
where we have used the following property:
[4,(B))] =4 (B))[(B)] =0, ((B))=(B).
(A27¢)

Noting that
(E;, —&,))E, = (B, — #,)B, =G,
(B, — &)= (B, — %), =0,
and
{v, -, H(E, — €)E; + (B, — #,)B;}
= (1/¢){ — (vXB),E, + (vXE),B,Hv, — ;}

= — (2/¢)(¥VXV),E;B;, (A27d)
we are led to
?=2{[(} G:D; — G¥8;) (v; — B,)
— (1/e)(VXV)EB; |}, + (E;(v; — §)))
X[& ihp) + (B, (v; — O, B .Ajl},  (A27e)
or equivalently,
P=K,({v;) — b)) + L,[v;], (A27f)

with
K, =[K;lh; + (EDL & ;] + (B B8],
L, = (Ky)a; + }UENE ;A + B B ;4,0
K; =G, — 2G5, (A27g)
+ (1/¢){(vXE),B, — (vXB),E,} .

We easily notice that # vanishes for v = ¥.
Now if we combine (A25) and (A26) with the Eq.
(4.8) of Ref. 5,

om=[(tF + Gy, — F; ~ J(E 4+ B (v, — )14,

(A28)
we get
o=, B+ FIUE) 150, + c( & XM+
(A29)

On account of (A14) and (3.25), Eq. (A29) transforms
to

o™ = fy 4 Fo( F)
+ (EMAXIPX (v — D]} + c(A)(BX] ED

+ @V A+ + [TP1) —0)A, . (A30)
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Notice the analogy with the following volume equations
[(3.42) and (3.41) of Ref. 5]:

O =, v+ FNE 4 (T, +c( EXMA),),;,
(A31)

and
*
wem p— fm.v +/og + g'P + CI'(vxg) +T;fnv‘,l *

(A32)

Expressing VX & and n X[ &] with the help of (3.12)
and (3.23), decomposing v; ; and [v;}#; into symmetric and
skew symmetric parts, introducing the vorticity vector
® =4 Vv and its surface counterpart & = }iiX[v], and
taking account of (3.22) of Ref. 4, we obtain

O = £y + ™0 + ph ™ (A33)
and
= £ 4 ()i + (ph ™)
+ P+ 281w — DA, (A34)
where
phe™ = F-& + &P — 4B+ Vuptd, (A35)

(ph™™) = (&) + (&) {axX[PX(v— )]}

— (MY{BX[BX (v — D} + [v, 1Ry, 57

(A36)

Thus & and &°™ are made of the powers developed by

the ponderomotive force and couple, of a volume and surface

contributions ph * and ( ph ™) , which result solely from

the fact that the material is assumed to be electrically polar-

ized, magnetized, and is a conductor, and of additional sur-
face terms which vanish for v =¥.

Another useful form may be obtained on decomposing

® ¥
P, B, and introducing P = pw. After many manipulations
we are led to

= "y + F-& + p&- ﬂ—-.//( - (A37)
™= femi 4 Fu(E) + <$>-[P<u,. — )14,
+{& 1P (v; — D)) A; — [ A J(B; (v; — 5,)) 7
+ [ A (B, — D)4, +7, (A38)
or equivalently
o =y + FUE) +X,((0,) —8,) + Vi[v], (A39)

with

X, =K, + X,h,,
X; = (&) [P] + [-#](B))S
Y, = ((&)(P) +} [-#][BD

Y;’ =Li + anj ’

s+ 18,1 — LB,
&, +igap). (A0

An alternate expression of ™ may be obtained, directly
from Eq. (A28), which, on account of Maxwell’s equations
and (A13) and (A14), leads to
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O =G FAE) — %+ [(15 + G,5,) (v, — B,)

—~ J(E* + B?) (v; — )14, , (A41)

with

: P = [ ST + }'.(39) (A42)
and
2= (&)Y XIDX (v~ D)), + (F)X[BX (v — D)]),

— [zyg(ui -], (A43a)
with
254 =(€.)D, = (¥#)B, — ((£)D + (¥)B)5, .

(A43b)
The superscript d stands for dielectric, since, in the ab-
sence of conduction (f = 0) 2% reduces to the jump of
Poynting’s vectors. It is easy to notice that for a material
surface (v=¥ = v), (i) 2. vanishes and — |.¥}+h is noth-
ing but the Joule effect at the interface and (ii) the various
expressions of & reduce to
O™ =1"G + F(E). (A44)
The decomposition of (A41)-(A44) allows one to
write
=+ B + ([t
an —_ f.)( {v,) —9,)
+ (¢ + GO, — W(E* + B*)S,)A, — "7 v ],
(A45)

+ G;b; — 4 (E* + BY)§,]

where we have set
MP = +4(8,) — (&)[D] +(#)[BDA,,
(A46)
= + {(i(D))(#,) — (i-(B))(#,)}
— ((&F)(D) + (F)(B))A;, . (A47)

Equations (A26) with (A27f), (A39), and (A45) give
directly the expressions required for the treatment of dissipa-
tive constitutive equations and they allow one to consider
easily particular cases such as the absence of mass transfer,
in which case we may assume ¥ = (v} in a first approxima-
tion (see Ref. 7) while [v]3£0.

Before ending this appendix let us notice that the combi-
nation of (A28) with (3.54) of Ref. 5 leads to the electro-
magnetic energy written in the Galilean frame as follows:

& = (FAYI(E* +B*)] — [S —w(EP)Ji. (A48)
After many calculations, using Maxwell’s equations in
R we areled to
™ = §-(E) — ((E)-[P] —
+ [(EP)v, )R, .
Equations (A48) and (A49) are the surface counter
parts of the following volume equations obtained in Ref. 5:

a)em I __8__1_ (EZ
at 2

(M)-[B]) (V)
(A49)

B?) — V-[S—v(EP)] (ASD)
and

N. Daher and G. A. Maugin 3033



JP JB
= JE+E—-—M-
+ at Jt
Equation (A49) may be of interest to deal with in the

case of a fixed surface ¥ = 0; hence we obtain
o™ = J(E) + [EP)(v)h+ (EP)[v].  (A52)
On using the 1dent1ty (A6), we obtam an alternate form
for &, related to / Sf instead of / (&), and to ™
through [q,?f + (1/¢) / X (B)]+¢ when we account for
(A23).

+ {(EP),},, (ASD)

APPENDIX B: ELECTROMAGNETIC ENERGY IDENTITY
IN THE PRESENCE OF A SINGULAR SURFACE

The aim of this appendix is the evaluation of the electro-
magnetic energy identity when the medium is spanned by a
discontinuity surface. We shall show the power developed by
surface electromagnetic forces and account explicitly for the
Joule effect in the same way as in the bulk. We recall that we
consider neither surface polarization nor surface magnetiza-
tion. To that purpose, let us write the following identity:

d

E?4+ BYd
o (+)v

 dam
D-E( Ve dt dt +/

— (S — (5 + Gw;)v)n,da

oD-%
f (5 + Giby v, — § (B2 + B?)

X (v; — 5 ,I#; da, (B1)
which is obtained on combining (A37) and (4.5) of Ref. 5,
and accounting for ¥ = v-ii.

On account of (B1), the second equation of (4.18),
(4.14), (4.22), (4.23), and (2.14) and the transport theo-
rems we can write

iUem= -

o dm dp )
feme &+ —— 4 pBr —— &
dt D-z( Ve dt te dt +F

X dv —f (T*™y + *n)da
oD-X

—f[(t°“‘+G,-ﬁ,. — }(E* + B*> — 2.4'B)5,)
X (v; — ;) — &, 14, da . (B2)

At this point, only volume Maxwell’s equations have
been employed. In order to place in evidence the Joule effect
at the interface, we use surface Maxwell’s equations (3.21)
and (3.22), thus obtaining the electromagnetic energy iden-
tity as follows [compare with (A41)-(A47)]:

i Uem
dt

= — (F‘“-v+p?f-fi——+pB- +/§f)

D-X

- (T + Fn)da

oD-Z
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_J(ﬁem.w,;r.(g) +7m, — 5,)14,)da,
P

(B3)
with
2 2
A=+ G 27y - (X2 _rmle,, )
2L =AE)ID; +(H)B, — ({&)D + (¥)B)S, .
(BS)

APPENDIX C: STATEMENT OF THE PRINCIPLE OF
VIRTUAL POWER IN THE PRESENCE OF A SINGULAR
SURFACE AND INCLUDING ELECTROMAGNETIC
PHENOMENA

The principle of virtual power may be extended to ac-
count for electromagnetic phenomena, in the presence of a
singular surface, by the use of the so-called first gradient
theory discussed at length for electromagnetic continuous
media in Ref. 3 and for purely mechanical media presenting
a singular surface in Ref. 4. In the present approach we con-
sider neither electromagnetic ordering such as in ferromag-
netism or ferroelectricity nor surface polarization and mag-
netization.

On account of the systematic procedures presented in
Refs. 3 and 4 and of the above-mentioned restrictions we get
the following expressions

Pr— | pras— [ Cor+ prrda, 1
Dz b3
dm,
o P iy
? D-x Jv} P dt
du
+pB( )]dv—i-ffv da, (€2)
P = T,v* da +f T,0*dl, (C3)
aD-X dx
and
dv, JG
IP: - ( et} i) ‘d
D-x P dt + at o av
 db, S A
+f p——+[m(v;, — b,) — (VA)G;] J0* da
b3 dt
+ Gnvtda, (C4)
oD-%
where we have set
pt=o,D¥ —p*E (D, m)¥ “PLB:'(DJ ©E, (C5)
=7, —9)*), b =&:jb§ s (Cé6)
and which must satisfy the following statement:
Pr="P}+'P§+'P? (CM

for any virtual field and any element of volume, surface, and
line. (The only new point concerning the construction of ‘P *
is that when 2 coincides with the boundary, [m(v; — b;)

— (¥+)G,] reduces to G,v; n;. This term vanishes only if the
surface is fixed (¥ =v =0).) After use of the generalized
Stokes’ theorem accounting for the presence of discontinuity

N. Daher and G. A. Maugin 3034



surface, we are led to the following local equations:

p P 9 o bty 4+ f D3 (C8)
dt ot AR R ’
T, =@y +t7+Gu)n, ondD-Z (C9)
f;iv-"-+ [m(v, —5;) — (¥R)G]
dt
=71+ (¥, +208)8, + /; onZ, (C10)
T, =&,,r, along 3%, (C11)
EF=0;+t{ %R onX*, G,4;=0 onZX,
(C12)
'E, +#,=0, ‘B, +B,=0 inD-3. (C13)

On combining (C10) with (C12) we obtain the more
conventional form
dA ~ ~
p v +Im@, -0 =1[t; +t 7+ G4, + V6, + ;.

(C14)

On using the concept of ponderomotive forces £ and
f= instead of the electromagnetic tensor 7™ and momen-
tum G, through the volume and surface 1dent1t1es (4.21) and
(4.22), we may state the principle of virtual power in a
simpler but equivalent form. The latter is given by Egs. (4.1)
and (4.4)-(4.7).

It is easy to notice that the local equations (C8)—(C13)
are exactly the same as (4.27)-(4.32) combined with (4.21)
and (4.22).

APPENDIX D: GENERALIZED DIVERGENCE AND
TRANSPORT THEOREMS

The transport theorems for volumes and surfaces are

4 ddv= - [d¢ + ¢(V-v)}dv

dt Jpx d

+f[¢(v—v)]-ﬁda, (D1)
f 3 da _f {""‘ + ¢(v-v)] da.
(D2)
The divergence theorems in volume and on a surface are
f V-A dv + f [A)fida = Anda, (D3)
D-Z z 3aD-Z
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f (V+208)Ada=| A=dl, (D4)
p )3
where
V =P;V,, P;=06;—nh;, 2Q0= —Vi. (D5)
We also note that
a3 ad f N
— dv= ——dv — . da . D
at nz¢ v fnz ot v 2[(vn)¢] N (D$)
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The fermionic and supersymmetric octonionic bimodular representations are constructed. It is
shown that an octonionic formulation of the fermion leads to an intrinsically ten-dimensional
world with two independent representations. Consistency conditions for an octonionic

supersymmetric algebra are also discussed.

I. INTRODUCTION

There has been a surge of interest in the superstring the-
ories of unified fundamental interaction. It is well estab-
lished that such theories can be consistently formulated only
in space-time dimension 10 for superstring theories, so it is of
considerable interest to understand why this dimension
should be special.

In the past few years the association of division algebras
with supersymmetry for various N and space-time dimen-
sions D has been studied by several authors.”? Kugo and
Townsend” made a systematic study of this problem. They
showed that the sequence of association D =3 with real
numbers, D =4 with complex numbers, and D = 6 with
quaternions could be understood by the isomorphism
SO(2,1)~SL(2R), SO(3,1)~SL(2C), and SO(5,1)
~SL(2;H), where SO (s,¢) is the universal group of the
Lorentz group. For octonians, however, no such association
exists as the algebra is nonassociative. Although several
authors® had anticipated that octonions may be related to
the interesting case of D = 10, this could not be proved be-
cause of the nonassociativity of the octonions. In this paper
we attempt to prove this association. We get around the
problems of nonassociativity by using an alternative bimo-
dular representation for octonions. The plan of the paper is
as follows. We first present the octonionic bimodules. This
formulation is then used to study (1) fermions and (2) the
supersymmetric representation, which is valid under certain
constraints on the octonionic Grassman number. This may
provide a natural prescription for compactification along
certain octonionic direction.

We introduce an octonion

@ = aoey + @18y + - + A184=0,e, + a;€,, ()
where the algebra of the octonion units is given by

€o€o = €y,

eoe,' =e,'eo=e,-, (2)

ee; = — b, + €,.6,.

To completely specify the algebra we need to give the
cycles for which the antisymmetric €, = + 1. There are
eight possible variations available; we use for definiteness
Cayley’s original variant, with €;;, = + 1for (jjk) = (123),
(145), (176), (246), (257), (347), and (365). Note that
the algebra (2) implies that multiplication is nonassociative.

We define octonionic conjugation as the involution

a=a,— ae;.

3036 J. Math. Phys. 27 (12), December 1986

0022-2488/86/123036-04$02.50

It follows that
ad =ada =a} +a; + a3 + - + a2=la|?, 3)
where the quantity |a| is called the norm of a. Clearly |a| =0

if, and only if, a = 0. As a consequence we may define the
multiplicative inverse of a:

a~'=a/|a|, a#0. 4)

With the properties of the norm given above, and the
result |ab | = |a| - |b |, the octonions form a division algebra.
In fact, they are the most general such algebra, the others
being the reals, the complex numbers, and Hamilton’s qua-
ternions.

We must be careful in defining division over the octon-
ions. We define x to be the left quotient of a divided by b if
bx = a, and write x = b /a. Similarly we define a right quo-
tient by x = a/b if x satisfies a = xb. In general the left quo-
tient of two octonions will not equal the right quotient. The
associator of three octonions is defined by

{a,b,c}= (ab)c — a(bc). 5

With this definition we can write down left and right
division tables for the octonionic units eg,e;. From these ta-
bles we can extract rwo sets of 8 X 8 matrices which together
form the bimodule representation of the octonions.**

From the left division algebra we get the set

— o, 0 0 0
L= 0 —io, O' 0 ,
0 0 —io, O
0 0 0 io,
0 —0o; O 0
L= o 0 0 0 ,
0 0 0 —o
0 0 g, 0
0 —oa 0 0
L= o, 0 0 0
0 0 0 — oy
0 0 — o, 0
0 0 —o; O
0 0 0 0,
L,= d B
‘1o o 0 0
0 -o 0 0
° (6a)
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(o 0 -0, O
0 0 0 o
L= o O 0 oy
Ko ie, 0 0
0 0 -—o 0
L=} o, O o)
\ao 0 o0 0
0 0 -0 O
L=} o o 0 (I
Ly=1.

The o matrices are the familiar Pauli matrices

__(1 0) 0_(0 1)

%=V 10 T\t o)
_(o —z) _(1 0)

2=\ o) BT )

There is a similar representation for the R matrices. To-
gether they satisfy the relations

{L,,Lj} = - 28,/ Lo,
{R,')Rj} = 26(]' RO’
RR+L, L= C:,-(LI +R,),

(6b)

(6¢c)

where J, j,I = 1,2,...,7 and C, are structure constants.
It is amusing to note that

det(aoLo -+ a,L,.) = |a|8 = (0(2) -+ a% + e+ a% )4

and, since the L; matrices are orthogonal, we see explicitly
how the octonions are related to the group SO(8).%*

il. THE FERMIONS

To derive our Dirac matrices we introduce two octon-
ionic spinors

=(3): x=( %)

In lower dimensions over the other division algebras
these correspond to chiral and antichiral spinors, respective-
ly.2 Note that y = €@, with

_(0 1)
e=\_1 o

We form the product
+_f(da a§)=(VO+V9 14 )EV .
¢4 "(ba 5/ =\ v v—w)ErT
where V= Ve, + V,e, + - + Ve, and V,, V, are real. We
thus obtain a ten-dimensional space with the set of matrices
given by
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”_(1 0) (0 1)
7_019109

0 —¢ 1 0 ) .

(e'_ 0 ) (o _ 1) i=L2.T (8w
Similarly, setting yy ™ =V, 7 * we obtain

1 0 0 —1
o
4 (o 1)’ <—1 0 )

0 ¢ -1 0)
(—e,- O)’ (0 1/’ (80)

The sets y*,7* are the ten-dimensional analog of o#,* in
four dimensions.? It is easily checked that

YV VTR =70+ VYR =291, (8c)
where
+1, pg=v=0,
77I-W =4 — 1’ M= V#O,
0, otherwise.

If we now substitute the L, for the e; in *,7* we obtain
two sets of 16 X 16 matrices which we use to write our Dirac
set of 32X 32 matrices:

_(° r“)
I‘”—(? o) (9)

By virtue of (8) these satisfy
T + I'T* = 291,
and hence
tr(T*T) = 329", (10)

Of course, there is another set, obtained by replacing e,
by R;, which also obey the Dirac algebra (10). We now turn
to some simple applications of the set defined in (9).

We write the Dirac equation as

(ir"‘ 3“ — m)\[/ = 0,
with ¥ a 32-component complex spinor.

The matrices representing P, C, and T are obtained in
the same manner as those in four dimensions, with the
proviso that complex conjugation be replaced by octonionic
conjugation, and that this process takes L,— — L;. We then
obtain (up to phases):

P=T°

C=T°T'T?,

T=TCT2r°rr’rer'rs.

We also have the generalization of ¥° in D = 4:

(11)

1 0]
' =ror!.. 9:( ),
r o -1

and we can therefore form helicity projection operators
P, =3(14£TM).

To illustrate some of this consider the rest frame Dirac
equation in momentum space:
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F—m)¥=0.
Since p* = (E;0,...,0) in the rest frame, (12) becomes

(—m E
E —m

(12)

)\I’=O. (13)

The solutions of (13) are

W, oy —
'p), 'y, =(+1vy,,

(i) E=-—-m \I/,=( ¢¢); ry_=(-1v_.

(i) E=+m: ‘P+=(

We see that particle and antiparticle solutions have the
opposite parity. Similar applications may be demonstrated
in analogy with the well-known four-dimensional Dirac the-
ory.

lil. SUPERSYMMETRY

We show here that in constructing the simplest ten-di-
mensional supersymmetry, an on-shell model with one oc-
tonionic scalar field, and an octonionic spinor, we encounter
an intriguing result—the supersymmetry parameters cannot
be the most general type of octonions.

Webegin with the ten-dimensional representations Egs.
(8a)~(8c) where e,—L, (and R, ) for i = 1,...,7. The action
is given by

S=fw%Tﬁ_Amm+u+®u, (14)

where A is an octonionic scalar field, A is an octonionic
spinor, and the differential operators are given by
(p=1-10)

01=40=48=3"3,,
d=1y"d,,
d=7*3,.

The on-shell field equations are
OA=4d4=0.

And the symmetry transformations are
SA=¢€"4,
oA = —iy*ed, A,

where

-(3)

is an octonionic spinor with a = ¢;a; and b = ¢,;b, and ¢, and
b, are complex Grassmann numbers. It should be noted that
in general €* = 0 for complex Grassmann numbers, €* = 0
for quaternionic Grassmann numbers, and €® = 0 for octon-
ionic Grassmann numbers.

The commutator of two supersymmetric transforma-
tions on A is given by (in the notation of Ref. 2):

[51’52]A = 2§a aaA’
with
£% = (i/2) (e v°€, — € V%€y).

(15)

(16)

(17)

(18)
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It can be shown by direction calculation that £ *is not an
octonion—that is, all but the coefficient of e, in £ * vanish;
for definiteness we take

a-(3): ()

The commutator of two supersymmetric transformations on
A yields

[61.8,]4 = —iyP(e,6; — €,6;" )IpA. (19)

In the D = 6 case with quaternionic fields the identity
(20)
can be used to close the algebra.? In our D = 10 case the
identity (20) holds if, and only if,

(@d; —a;d,)) =0, i#j=12,..,7. (21)
We now discuss two types of cases where the above condi-
tions are satisfied:

(a) The octonionic entries in the € spinors choose a
“special” direction in the octonionic space. For definiteness

we take the e, direction and demanding that the entries of €
are of the form

€ = (aoeo + a7e-,) - (Coeo + 0797)
P \boey + brey)’ doe, + dse,)’

+ — - ~
€€ — €6 = —i£Y,

(22)

leads to a closed algebra on shell, as Eq. (20) is finally satis-
fied. It is amusing to note that as supersymmetry chooses an
octonionic direction one can split octonions along this direc-
tion, i.e.,

u; = §(e; + ey 3),

uy=4(ey+iey), ufd =1i(1—1ie;).

uf =4(e; —ie;.5), j=123,
(23)

This gives us a natural prescription of compactification
along e, direction.

(b) The other way to close the on-shell algebra Egs.
(19) and (20) is to write the supersymmetric transforma-
tions as

a c

6‘“_‘(0)’ eﬁ(o)' (24)
For these truncated €’s, £ ¥ = 0 if ¥#0,9. This give us

— 77, =4(— e+ ) (%o + o). (25)
From Egs. (8a) and (8b) we have

1 . . 1 0)

- = . 26

2(}’o+7’9) (0 0 (26)

And Eq. (20) is satisfied:
— 87, = €6 —e€.

These types of solutions have recently been studied by Ad-
ler,® in connection with the quaternionic field theories.

Finally, we note that if we start with an octonionic vec-
tor and follow a procedure as in Eqgs. (8a) and (8b), we find
this is associated with a 26-dimensional space via Jordan
matrices [ M § with Tr(M) =1].7
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The anomalies in exceptional-type supersymmetric nonlinear o models are investigated. The
cohomology rings of Kihler manifolds E¢/Spin(10) X U(1), E,/SU(5) XSU(3) XU(1), and
Eg/SO(10) XSU(3) XU(1) and the Chern classes of the tangent bundles of these manifolds
are calculated explicitly. It is shown that the E¢/Spin(10) X U(1) model is anomaly-free but
the E,/SU(5) X SU(3) X U(1) and Eg/SO(10) X SU(3) X U(1) models are anomalous.

I. INTRODUCTION

Supersymmetric nonlinear o models based on excep-
tional groups'~ have some interesting properties especially
in that they can accommodate quarks and leptons required
in the standard GUT models as quasi-Nambu~Goldstone
fermions* in a quite natural manner. In fact, it can be shown
group theoretically’™ that the nonlinear realizations on
Kihler manifolds E./Spin(10) X U (1), E,/SU(5) XSU(3)
XU(1), and E,/SO(10) XSU(3) XU(1) admit, respec-
tively, one, three, and four families® of quarks and leptons.
The closed forms of Lagrangians also have been derived re-
cently.' So, it is worthwhile to investigate them in more
detail as to whether they are good candidates for realistic
models at least as effective theories at GUT level.

Recently it was shown by Moore and Nelson® that sever-
al nonlinear o models with Weyl fermions suffer from a cer-
tain anomaly analogous to that of non-Abelian gauge theor-
ies. If the models of the exceptional type we are considering
contain this anomaly, they are unsuitable for describing dy-
namics even as effective theories, because the anomaly
makes the theories ill-defined dynamically.

In this paper it will be shown that the anomaly pointed
out by Moore and Nelson does not exist in the E¢/
Spin(10) XU(1) model but does exist in the E,/
SU(5)xSU(3)xU(1) and E¢/SO(10) xSU(3)xU(1)
models. As was clarified by Moore and Nelson,® this kind of
anomaly originates from the nontrivial topology of the space
of mappings from the space-time to the coset space G /H in
which the scalar fields take their values. In four-dimensional
space-time and with Weyl fermions, as was pointed out by
Zumino,” supersymmetry requires the coset space G /H to
admit a complex (Kéhler) structure (the choice of a com-
plex structure is determined by the fermion representation).
This designates one complex structure on the tangent bundle
T(G /H). By the Atiyah-Singer family index theorem,® the
anomaly is related to the characteristic class of T(G /H).
The result of Ref. 6 is
@ * chy(T(G /H)),

Anomaly = f (1.1

'S2 X (space-time)

where @: S2X (space-time) -G /H and ¢ * is the pullback
induced by c} In Sec. II, we briefly review this anomaly and
also interpret it relating to the group cocycle introduced by
Faddeev’® in the study of the non-Abelian gauge anomaly.
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Our motivation as physicists lies in the investigation of
whether there is an anomaly in supersymmetric nonlinear o
models based on the E,-type group, but our main task is a
purely mathematical one; to calculate ch,(7(G /H)), an ele-
mentof H °(G /H), and toevaluateits pullback to H (space-
time X.5?).

So, let us roughly outline our way of doing mathematics.
Our calculation of ch,(T(G /H)) is essentially based on the
general work of Borel'® and Borel and Hirzenbruch.!! In this
paper we will do, at every stage of our investigation, some
necessary and introductory review of their work. After that
we will present our results of the calculation.

When a 2n-dimensional real manifold G /H admits a
complex structure (it is in our case), its tangent space at any
point can be seen as an n-dimensional complex vector space.
The subgroup H of G acts on G /H as an isotropy group and
on tangent space as a linear unitary transformation. This is
called a linear unitary isotropy representation of H which we
denote

tc: H-H C U(n). (1.2)

It is proved in Ref. 11 that the Chern class of the tangent
bundle T(G /H) is equivalent to that of a principal U(n)
bundle over G /H, which is induced, by themap ¢.: H—-H,
from the bundle 7 (total space G, base space G /H, structure
group H) and is denoted by 7. The Chern class of the bun-
dle 7. is given by a certain pullback of that of the universal
U(n) bundle. The authors of Ref. 11 analyze the nature of
some relevant bundle mappings and pullbacks induced by
them, and finally conclude

odT(G/H)) =c(nc)

=[] 1+e), modI*(®,  (1.3)

j=1

where @; (j= 1-n) are the so-called “complementary
roots” and 7 * (@) is the ring of Weyl invariant polynomi-
als'? of the root of G without the constant term.

The complementary roots are the roots of G that charac-
terize a G-invariant complex structure on G /H. Weregard a
2n-dimensional real manifold G/H as an n-dimensional
complex manifold by identifying G /H with G €/P, where
G € is the complexification of G obtained by complexifying
the Lie algebra of G and P is a closed subgroup of G € such
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that P N G = H. Then, the complementary roots are such
that

{all roots of G} — {roots relevant to P};

they are the weights of the linear isotropy unitary represen-
tation of H.

Thus our task is to calculate the complementary roots
and find I * (G), both represented in a suitable manner con-
veniently to evaluate the pullback of ¢(T(G/H)) to S?
X (space-time).

The construction of the sections are as follows. In Sec.
111, we present the roots and invariant polynomials'? of the
Weyl groups for the Lie algebras of E, for G and those of 4,
and D, for H. In Sec. IV, we calculate the cohomology rings
of G/H (G = E,). We represent them by several sets of co-
ordinates of the maximal torus, which are suited to see the
manifest invariance under the Weyl group of H. This para-
metrization is necessary to evaluate the pullback of the
Chern character of T(G /H), which will be done finally in
Sec. VII. In Sec. V, the complementary roots w; for E,/H
are calculated, with the introduction to complex structure.
In Sec. VI, Eq. (1.3), especially chy(7(G /H)), is calculated
using the results of Secs. III and V, with a brief review of the
relevant part of Ref. 11. Finally in Sec. VII the pullback of
the Chern character into H *(S X space-time) is evaluated
using the homotopy argument and the presence or absence
of the anomaly is concluded to each model with some phys-
ical considerations. In the Appendix the roots of E{ are giv-
en, from which the roots of ES and ES are easily derived.*?

Il. ANOMALY

Before detailed discussions of the anomalies in excep-
tional type nonlinear o models, we briefly describe the gener-
alities of the anomaly in a nonlinear o model following Ref.
6. Let Map(X,G /H) be the set of differentiable mappings
from the space-time X, which we suppose to be compactified
t0.S %, toa homogeneous space G /H admitting some complex
structure where G is a compact Lie group and H some sub-
group of G. Here Map(X,G /H)) becomes a topological space
with the appropriate topology. Given a geMap(X,G /H),
the coordinates { y'} of G /H are related to the coordinates
{x*} of X, i.e., the image points of x* are ' = ¢ ‘(x), which
are differentiable functions.

Let g; ( ) be the metric tensor of G/H. The o model
action is then

S, =Jd“xg,r d,p'd*ep”

Weyl fermions ¢/ coupled to the fields ¢’ are regarded as
sections of the tensor product fiber bundle Ef=S5*
® @ *(T'(G/H)), whereS * are the spin bundles of chirality
+ 1and ¢ ¥(T(G /H)) is thie pullback of the tangent bundle
T(G/H). Each peMap(X,G/H) gives a Dirac operator
ﬁwz T(E;) -I'(E ;) (I denotes the vector space of sec-
tions). In local coordinates

B, )’ =", 8, + T (@3, @ N (1 +¥5)/2] ¥,
(2.2)

(2.1
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where I'j, is the Riemann connection of G /H. The invariant
action for /el (E ) is

S,=fd“xg,,- ¥V -1(B, 9y (2.3)
and the effective action is formally written as
2(p) = | 1d9] [dplexp( —S))
=det(v —158,). (2.4)

The result of Ref. 6 is that we should not regard Z(¢) as
an ordinary function on Map (X,G /H) and if we stubbornly
insist on it, the function generally has a singularity. It is a
section of the complex line bundle L over Map(X,G /H). So
we must cover Map(X,G /H) by patches { p, }, and define
the effective action Z*(g) patchwise: for gep, N pg,
Z “(@) must be such that

Z(p) = 8a5(@)Z " (), (2.5)
where g,4 (@) is a continuous map
Pa Nps—GL(1,C) =C*=C - {0}, (2.6)

called the transition function.

Since the structure group GL(1,C) of L is reducible to
U(1),wecanputg, (@) = e/~ T«(® Thus we may regard
Eq. (2.5) as a unitary ray representation of G that acts on
Map(X,G /H) and a, as a one-cocycle of G, i.e., a,cH!
(Map(X,G /H); C*).°

For the theory to have a well-defined quantum behav-
ior, Z(@) must be an ordinary function on Map(X,G /H), so
the anomaly is defined as the nontriviality of L, i.e., the non-
vanishing “twist” of L. The twist of L is determined by the
first-Chern class ¢, (L) or a,, which is an element of

H*Map(X,G/H); Z) = H'(Map(X,G /H); C*).

2.7)
This equality® is derived from the exact sequence,
0-Z - C-C*-0. 2.8)
: inclusion exp
Thus
Anomaly = f ch,(L)
2
=| e (TG/EMAMD, (29

XX
where S? is a noncontractible two-sphere imbedded in
Map(X,G /H), ¢ is a mapping S>X X -G /H, and A(X) is
the Dirac genus. The last equality comes from the family
index theorem.® Taking X = S* the above expression be-
comes

f @ * ch,(T(G /H)).
X 5%

In the following sections we evaluate this formula using the
roots of G.

itll. ROOTS AND INVARIANT POLYNOMIALS OF THE
WEYL GROUP

Let & be the Lie algebra of a semisimple group G with
the rank / and the dimension d =/ + 2m and §j be a Cartan

(2.10)
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subalgebra of it, i.e., the Lie algebra of a maximal torus of G.
The roots of ¥ withrespecttol), + a, (1<i<m), define real-
valued linear forms on ). We have then ¥ €, the complexifi-
cation of ¢, and |, a Cartan subalgebra of %€, such that
H€ N ¥ =1). Wedenote the roots of ¥  with respect to ) by
+ 2m/ — 1 a, (1<i<m) and choose, as the basis of ¥,
h,ep® (1<l'<1) and e ; (1<i<m) satisfying

[h,, 1] =

[h,-,eij] = +2m/ —1a;(h)e,,

(3.1
(e ec] =Nk & rir
[e-:» e, ;] = linear combination of 4,’s,

where each W, is a real number that does not vanish if
a;+a, is a root again. Here & is then spanned by A;
(I<i<l), ¢;+e_;, and y — 1(¢; —e_;) (1< j<m) over
the reals.

The scalar product on h* (dual space of ) is induced by
the Killing form (see the Appendix), from now on denoted
(, ), and the Weyl chamber W is defined by { yeh*|
(@4, ¥)>0, a, (1<k<!) are simple roots}. The Weyl group
W(G) is generated by

{0, ]a;(1<i<I) are simple roots},

(}») -—l 2 (A':al) a,-,
(a;,a;)
Especially for a, beroot, o, (b) is a root again.

We denote by 7(G) the ring of W(G)-invariant polyno-
mials'? on §* with real coefficients, by S( y,,..., y,,) the ring
of symmetric polynomials of y;’s, by S;( y;..., »,) the ith
elementary symmetric polynomial. We present here some
results for later use.

() & =4, (1),

(3.2)
Aeh*.

¢ %2 %3 et}
Dynkin diagram, OO = = = ——O +
simple roots, a, =x; —x,,, (1<i<l);

roots, + (x; —x;) (#j, I<i<j<i+1), Yx,=0

i

(x;’s denote the coordinates of the maximal torus) G
0,, (i=1-I) generate W(SU(Il + 1)),
Ool XX, (3.4)
where <> means the permutation
I(4,) =S(xy,, X1, ) (3.5)

and
{S; (x5, X, .1 ); § = 2-I + 1} are generators of (4,).
(2) ¥ =D,(i54),

@ %2 %3 %p-2%g-1
Dynkin diagram, OO - T—o
simpleroots, a;, =x;, —x,,, (I<i<i—1),
o =x;_, +X
roots, + (x; +x;), +(x—x) (I<i<j<h; (3.6)
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g, (i=1-1) generate W(SO(2])),
at XX, (IKIKI-1)
and
O, Xj_| < —X. 3.7
I(D)) =8(x3 ., X7) X RXyX0%5" X, (3.8)

I(D,) is generated by {S;(x3,.., x})} (I<i<l—1), S;(x)
=XX "%, }.
(3) 9 = E; (see the Appendix),

@ 8y %3 %4 %5 G5 Oy

Dynkin diagram, o——o———o——o—I—o——o :
a

8
simpleroots, a,=x, —x,,, (1<iK7),
a3=-x5+x7 +x8;
roots, =+ (x, —x;) (1<i<j<9),

+ 04X +x) (I<i<j<k<9), T x =0

(3.9)
0, (i=1-8) generate W(E,),
O, X o X%, (1K),
: [x;—»xi+§(x6+x7 +x5)  (1<i5), (3.10)
O xiox — (X + X1+ X)) (6<i<8),

It is known'? that I(E,) is generated by
{I,; i=12,8,12,14,18,20,24,30},

where the index denotes the degree of the polynomial, espe-
cially in our parametrization {x;},

-2 (24 (2 %))

(4) ¥ =E,. We may replace the diagram of E, with
that of E; when a, is eliminated.

(3.11)

Dynkin diagram,

simple roots, «, (i=2-8);
(2<i< j<8),
+ (x; +x, +x,) (2<i<j<k<8),
+ (X3 + %3+ % (2<i<8); (3.12)
o,, (i =2-8) generate W(E,) and I(E,) is generated'” by
{I; i=2,638,10,12,14,18},

especially

=R (2 i}:"z x4+ (‘gz x,.)z) .

(5) ¥ = E, We may also replace the diagram with that
of E; eliminated by a, and a,.

roots, + (x; —x;)

~X;)

(3.13)

Dynkin diagram,
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simple roots, a; (/= 3-8);
roots, =+ (x;, —x;) (3<i<j<8),
+ (x; +x +x) (3<i<j<k<8),
T+ (x5 + x4+ -+ Xg); (3.14)
(i = 3-8) generate W(E) and I(Es) is generated'2 by
{1,; i=25,6,89,12},
especially

n=r(s §+(5 ).

i=3

Og,

(3.15)

IV. COHOMOLOGY RING OF G/H

The Chern class ¢(7'(G /H)) is an element of the coho-
mology ring H *(G /H). We first determine H *(G /H) for
the exceptional type G /H by using roots of G. Let H'(X) be
the ith cohomology group of X with real coefficients and
H *(X) beadirect sum of all H/(x)’s. Then H * (X) becomes
aring under the cup product. A map f: X— Y induces a map
between cohomology rings, f*: H*(Y)—-H*(X). We de-
note a fiber bundle schematically by

F5 EL B or (EmBF), (4.1)

where F, E, and B are the fiber, the total space, and tlie base

space, respectively, and / and 7 are the inclusion and the

projection. Let H be a subgroup of G with the same rank as G

and T'= (U(1)) be the maximal torus of G (and H). In

order to evaluate H *(G /H), one may use the cohomology

ring of the classifying space. We denote the universal bun-

dles for the groups G, H, and T' by (EG, m, BG, G),

(EH, 7', BH, H), and (ET', 7", BT', T"), where BG, BH,

and BT are classifying spaces. Since 7"/ acts on EH and EH
is contractible by the definition, (EH, p, EH /T', T') is the
universal (U(1)) bundle, i.e., EH /T’ = BT"'. One may thus
consider

EH
]
H/T'—eEH/T'=BT'
; | perian (4.2)
G /H —2wBH
l p(H,G)
BG

where i, and i, are inclusions and p, p(7", H), and p(H,G)
are projections. It is known'® that # is surjective, ker ()
= Im p*(H,G), p*(H,G), and p* (T ,H) are injective, and

p*(T', HYH*(BH) = H*(BT")"®, (4.3)

where H*(BT')** is the W(H)-invariant subring of
H *(BT"'). Therefore one has from the diagram,

H*(G/H) = H*(BH)/p*(H, G)H * (BG)
=p*(T', H)H *(BH)
X [ p*(T', H) o p*(H, G)H *(BG)] "
=H*(BT" "™ /H*(BT)*"?, (4.4)
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where H + (—) = H*( ) — Ho(——).
For the cohomology rings of 7'/ and BT’ one has

H*(T")y = Ag [x1. %], x,€HY(T), (4.5)
and

H*(BT") =R [ty,... 4;], t,€H*(BT"), (4.6)
where Az [ ] isthe exterior algebraand R[ ] is the poly-

nomial ring, both over the reals. The transgression 7 de-
fined'® by

H*-\1" % B~ ET' T £ H~(BT),

(4.7)
1 8 ~'(Img*) - H*(BT')/ker ¢*,
gives an isomorphism,
7 HY(TY=H?*BT"),ie,r(x;) =t (1<i<]).
(4.8)
Since b* is identified in a well-known way to H ' (T'"),
H*BT)=H'(T'") ~h*. (4.9)
Thus one may identify
H*(BTHY"'® ~[(H) and H*(BT")"® ~I(G),
(4.10)
obtaining
H*(G/H)=I(H)/I*(G), (4.11)

where I *(G) denotes a Weyl invariant polynomial ring
without constant terms.

We shall explicitly evaluate the cohomology groups of
the exceptional type G /H at lower orders relevant to the
anomaly argumert. The evaluation will be done by using Eq.
(4.11) and the results of Sec. I1I.

(1) Bg/SO(10) XSU(3) XU(1). We choose the subal-
gebra of the Lie algebra of E; as illustrated schematically in
Fig. 1. To find 7(SO(10) XSU(3) X U(1)) in a manifestly
invariant form under W(SO(10)) X W(SU(3))xX W (U(1)),
we introduce new parameters {c,, ¢, (i = 1-3,23_, ¢, =0),
¥, (a = 1-5) }instead of {x; (/ = 1-8)} used in Sec. ITI such
that

(c,a;) =0, exceptforj=3,

3
a,=e;— e, a2=e2—e3, Ze,=0,
i=1

AQoy3 =Vatr1 —Va (a=14),
and
ag =y, +J,. (4.12)
ay a, a, ay ag a6 a,
o—-o0—4—0-—t-0-———0—0
..
—=SU (3)—
so(10)——
FIG. 1. Subalgebra of the Lie algebra of E,.
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It is shown in the later sections that ¢, is the coordinate
corresponding to that of U(1) and is proportional to the first
Chern class. (We normalize it identically.) Written in old
parameters,

_—14(4zx,+3z )

i=1 j=4
= ¢,(T'(Eg/SO(10) X SU(3) X U(1))),
1 3
e,- =x,~ - Xiy
3 i=1 4
and
8
Vo= —Xgp3+— % (4.13)
2%

They are transformed under o, (i = 1,2,4-8) as follows:
¢, is invariant under o, ,
e,’s are invariant under o, (/ = 4-8), which generate
W(80(10)),0,:€; «>e;,, (i=1,2) (thistransformation
property coincides with that of x; of 4, in Sec. I1I),

¥.’s are invariant under o, (i = 1,2), which generate
W(SU(3)),

Os,,Ya O Vay (= 1-4),
and

Ogt V14> — V2 (4.14)

coinciding with the transformation property of x; of Ds in
Sec. III. Therefore we have

I(SO(10) xSU3) XU(D))
= S(e1,€,¢3) XS( ¥}, V3, ¥5)

X Ry ¥ 939, ¥sX Rey, (4.15)

where S(- - ) is a symmetric polynomial defined in Sec. III.
The explicit forms of H *(Ez/SO(10) XSU(3) XU(1)) at
lower orders are

H*=Rc,
. H*=R¢c +RZe§+R2y§, mod I ;+ (Ey),
l ) (4.16)
Hé=Rc} +Rc,2e§+Rc12y§

+R Y €, modl; (Ey),

where

1 0=n(34(32))

i=1

=R( (168) +2e +§y§)' @17

(2) E,/SU(5) XSU(3) XU(1). The subalgebra of the
Lie algebra of E, are chosen similarly (see Fig. 2). New
parameters are also introduced,

4 8
cl = — 5 (5 .zzx,- + 3 zsx_,)
i= j=
= ¢,(T (E,/SU(5) X SU(3) x U(1))),
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‘—-SU(3)—'J

SU(5)
FIG. 2. Subalgebra of the Lie algebra of E,.

(i=l—3, };e,.=o),

4

1Z
3 8
n=3 X%

e; =x,~+1

j=3

and

5
2n=ﬂ-
a=1
(4.18)
They are transformed under o, (i = 2,3,5-8) as follows:

z xj, (a = 2—5,

ya a+3

¢, is invariant under g, ,

e;’s are invariant under o, (i = 5-8), which generate
W(SU(5)),

O, € >e,y (i=12),

¥,’s are invariant under o, (i =2,3), which generate
W(suU(3)),

T V14> V2
and
Oapo3t Ya Vot (a =2-4). (4.19)

The explicit forms of H*(E,/SU(5)XSU(3) xXU(1)} at
lower orders are similarly evaluated:

H2=RC1,

H _Rcl +R2e +Rzya’ mOdIZ (E7)9
(4.20)

H°=Rci +RYe&+RYy, +Re, Y ¢

+Re, Eyﬁ, mod I ;" (E;),

-R(25,7+(55))

~Rr( +I0TE+T0T2). (42

(3) E¢/Spin(10) X U(1). We choose the subalgebra as
in Fig. 3. New parameters are

where

1" (Ey)

8
= _4(4x3 +3 xj)=c1(T(E5/Spin<10)><U(1)))
=4
and

1 8
Vo= —xa+3+—2—2xj (a = 1-5). (4.22)
i=4
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L Spin(10)

FIG. 3. Subalgebra of the Lie algebra of E.

Their transformation properties under o, (i = 4-8), which
generate W (Spin(10)), are the same as in the case of
E4/SO(10) X SU(3) XU(1). Cohomology groups at lower
orders are

H?>=Re,
H4=Rc% +R2y§, m0d12+ (E6)’ (4'23)
H6=RC?+RC12_V:’ mod I ;" (Ee),
where
8 8 2
17 B9 =R(3 3 2+ (3 %))
i=3 i=3
1 (c,\2 5,
=R(— (&) +6 3 52). (4.24)
2 4 a=1

V. COMPLEX STRUCTURE OF G/H AND
COMPLEMENTARY ROOTS

As has been mentioned in Sec. I, in four-dimensional
supersymmetric nonlinear o- models with Weyl fermions, the
homogeneous space G /H must be such that it admits a com-
plex structure, and if it is Kdhlerian it is sufficient for the
theory to be supersymmetric—this is as in our case. The
possible complex structure in our case is unique (up to the
complex conjugation), which we shall state in this section,

The subgroup H that we are considering is the centra-
lizer of a torus U(1) of a compact simple group G. Then by a
Borel’s theorem' G /H is homogeneous, Kihlerian, and al-
gebraic. The invariant complex structure J of such a mani-
fold G /H can be introduced uniquely by identifying G /H
with G €/P, where G €is the complexification of G and Pis a
closed complex subgroup of G € such that PN G = H.'"14
The Lie algebra of P is generated™ by &; (j= 1-1)€bS, ¢,
(i = 1-m), and e _,, such that a,’s relevant to e,’s are all
positive roots and a _,’s relevant to e_ . ’s are (negative)
simple roots satisfying (ay, b) = 0, where b is an element of
the Weyl chamber and the centralizer of T, (see the Appen-
dix) is the Lie algebra of H. The roots of G € complementary
to P are defined as

{all roots of G € — roots relevant to P}.

Then, a invariant complex structure on G /H corresponds to
a root system ¥, which is also a set of weights of the linear
isotropy unitary representation of H.'* [See Eq. (6.1).]
Comments: As for the G-invariant Kdhler metric, it is
constructed by means of Maurer—Cartan forms. Let o, be
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the left-invariant one-forms on G € whose restriction to ¥€
is annihilated by j°and w, (¢, ) = &, ;. Then the Kiihler met-

ric'M s

ds* = E (ba;)w; of,

/=1

(5.1)

where of =w _; and o} is the complex conjugate of ;. In
Refs. 1 and 3, one of the authors (Y. Y.) constructed the
closed forms of the Kéhler metrics for E¢/Spin(10) X U(1)
and Egz/SO(10) XSU(3) X U(1) using the fact that these
manifolds are embedded into Grassmann manifolds.

We present here the roots of G € complementary to Pin
the case of the exceptional type G /H. These are used to cal-
culate the Chern class in the next section.

(1) E¢/Spin(10) XU(1),

beR(4a; + Sa, + 6as + 4a, + 2a; + 3ag)

=R (4x; + x4 + X5 + X6 + X7 + X3),

and

(ap,b) =0 for k =4-8. (5.2)
Thus the Lie algebra of P is generated by b , e, (i = 1-36)
(a; are all positiveroots) and e _, (k = 4-8). Using the new
parameters we introduced in the previous section, the roots
of E § complementary to P are written as follows:

1 5
&.{.yﬂ +y, -5 Y y. (1<a<b<s),

16 c=1

Gy iy (1<a<5) (5.3)
16 % 24&7° ’

¢ 1 3

16 2 .;1”

(2) E,/SU(5) xSU(3) xU(1),
beR (5a, + 10a; + 15a, + 18a; + 12a4 + 6a, + 9a)
=R (5(xz + x5 + x4) + 3(x5 + x5 + X7 + X3)),
and

(a;,b) =0 fork=2,3,5-8. (54)

The Lie algebra of Pis generated by bg , e, (i = 1-63) (a; are
all positive roots) and e _, (k = 2,3,5-8). The roots of ES
complementary to P are

c/15—e; +y, +y, (1<iK3, 1<a<b<s),
2(¢,/75) +¢; —y, (1<i<3, 1<a<s), (5.5)
3(c,/75) +y, (1<a<s).

(3) Eg/SO(10) xSU(3) xU(1),
beR (4a, + 8a, + 12a, + 15a,
+ 18a5 + 1204 + 6a; + 9a;)
=R (4(x; + %, + x3) + 3(x4 + X5 + X6 + X; + X3))
and

(@y,b) =0 fork=12,4-8. (5.6)

The Lie algebra of P is generated by b5, , ¢, (i = 1-120) (a,
are all positive roots) and e _ , (k = 1,2,4-8). Complemen-
tary roots are
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c 13 ,
-ﬁ—e, +_2—a§. €.y, (1Ki<3),
2(c,/168) — (e, +¢) £y, (I<i<j<3, 1<a<5),
1 5
3(_.‘:'1_)___ Vs
Tes) "7 2

4(c,/168) —¢, (1<Li<3), (5.7)

wheree, = + landII}_, ¢, = — L.

VI. CHERN CHARACTER OF TG/H

We calculate the Chern character using the method in-
vestigated by Borel and Hirzebruch.'' Left (right) transla-
tion by geG induces a homeomorphism of G /H. If heH, it
leaves 0 = 77(e)eG /H invariant and induces an automor-
phism %: (TG/H)y,—(TG/H), The homomorphism

t:h—h is called the isotropy representation. The complex
structureon G /H defined in the previous section gives rise to
a linear isotropy unitary representation of H,

tc: H-H CU(n), (6.1)
with n = the complex dimension of G /H. This homomor-
phism ¢ . induces the bundle map from # = (G, 7, G/H, H)
to a principal U(#) bundle over G /H called the . extension
of i, which we denote by 7). A theorem of Borel and Hirze-
bruch'! asserts that 77 is equal to the principal bundle asso-
ciated with the tangent bundle 7(G /H). Thus one has
dT(G/H))

= ¢(the principal bundle associated with T(G /H))

=c(ne). (6.2)
We now consider the following commutative diagram of
mappings:

1
G ——— EH EU(n) «———— G XzU(n)
¢ ¥

G/T! =——— EH /T'=BT'——= EU(n)/T"=BT" p

p p(T' H) p(T"U(n)) , (6.3)
G/H BH — BU(n) - G/H

i olic)
p(H, &)
BG

where (G X ;U(n), p, G/H,U(n)) = 1¢, 0(ic) is the map
induced from the homomorphism ¢, called the characteris-
tic map for ¢ extension of 7 and 0’ = o(¢¢) ©i,. The Chern
class of 7 is given by

c(n¢) = a’*ceH*(G /H), (6.4)

where ceH *{BU(n))is the Chern class of the universal U(n)
bundle, which is defined by the equation,

pHTRUme = [T (1+7G)

ji=1
with 7’ the transgression of H ' (T'") to H >(BT ") and x| the
standard coordinate of T" identified with the element of
H'(T").Bytheequation &’ = g(¢c) © i, and the commuta-
tivity of the diagram,

(6.5)

pre(ne) =p*oiFoo(ic)*e

=¢* 0 ¢'* o p*T"U(n)le

—grog [ (1+7x)), (6.6)
/=1

where p* is applicable since c¢( 7. ) belongs to H*(G /H).
Because ¢'* commutes with 7/,

¢'* InI (1+7&))= f[ (14 7(a))),
j=1 -

Jj=1

(6.7)

where 7 is the transgression of H'(T") to H*(BT') and
w;(x) = ¢'*(x]) are the weights of ¢ by the definition'’ and
are also the roots of G € complementary to P. We thus obtain
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pre(nc) =¢* [ (1 +7(a)))

i=1
=] (1 + 7)),
i=1

mod I *(G) = p*(T, H) © p*(H, G)H *(BG), (6.8)

with 7 the transgression of H!(T') to H*(G/T"). It is
known!%!5 that when H is the centralizer of U(1), the spaces
G /T'and G /H haveno torsion and therefore the homomor-
phism p* induced by the projection p is injective. We may
therefore identify

c(ne)=][ (1 +#@), modI*(G),
Jj=1

=] (1 +@), modI*(G), (6.9)
j=1

because the transgression 7 in our case is isomorphic.
Using the results of Sec. V for »; and that of Sec. III for
I *(G), we can explicitly evaluate Eq. (6.9). The results are
as follows.
(1) E¢/S0(10) XSU(3) XU(1),

c(T(Eg/SO(10) XSU(3) XU((D)))

c 1
= 1 : —& A €, a)
complementaryroots( + 168 + 2 ; ¥
4
x(1+2(——16‘8)-(ej +e) + yb)
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(l+3(1ss)_%—ge‘y‘)
(1+4(168)_e’)’

mod{l+* (i=238,12, 14,18,20,24,30) }. (6.10)
Especially
¢y =), (complementary roots)
3 8
- 14(4 Sx+3Y x,),
i=1 j=4
2 5 27 3

=13932(—cl—) —11 2_2l v g2

“ 168 PR PR

2
mod1+_12( ) +Y e+ Yy
168 7 a
c3=760336( ° ) — 1812 ( )zy:—l
168 168/ % 3

xze, 2228( )Ze,, modI;". (6.11)
[]
Therefore we obtain

chy(T'(B¢/SO(10) X SU(3) X U(1)))
= 1/6(03 + 303 - 3(.‘1C2)

"18(168)2”2+ 0(168)2e2+( )
x;e,’+152(-1%8)3, mod I+

(2) E,/SU(5) XSU(3) XU(1),
c(T(E,/SU(5) xSU(3)xXU()))

(6.12)

(l +2b—e +y, +yb)
complementary roots 75

(l+2(75)+e’_y°)(1+3(75)+y‘)

mod{7;* (i = 2,6,8,10,12,14,18) }, (6.13)

¢, =) (complementary roots)

—S(Sigx,+328:xj),

s (5) -(3)34-(3)3%
mod1+=1s() 27 +23 57,

and

c3—65345( ) (%)
x34-(57) (35)34- () (35)

X3 yi, mod I,

W
il
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ch;(T'(E,/SU(5) XSU(3) XU(1)))
=(3%)37- (6)39+(3)
xSy +10(L)se

95
95( )( ) od I}
+2 7/ \3s ) medls

(3) E¢/Spin(10) xU(1)
¢(T (E¢/Spin(10) X U(1)))

(6.15)

= (l +_+ya +¥y —
complementary roots 16

(1+1—6—y¢+( ) 2 y,)

<(1+5-() 27)

mod{/ * (i = 2,5,6,8,9,12)}, (6.16)

¢, =) (complementary roots) = — 4 (4:\:3 + 28: x,) ,

i=4
€= (?)(01/4)2;
c3 = (¥)(c,/4)’,

and

ch; (T (E¢/Spin(10) XU(1))) =0. (6.17)
Here, we eliminated 23 _, »2 by using mod 7 ;"

(@ o)

I; R((2 1) +63%) (6.18)

VIi. CONCLUSION

We now evaluate the anomalies of the exceptional-type
nonlinear o models; we show that

J-é:"‘ch3(T(E6/Spin(10)XU(l))) =0

for any ¢: 5*Xs* > E¢/Spin(10) XU(1) and § @* chy,(TG/
H) #0 for some @: s* X s*— G /H, where G /H = E,/SU(5)
X8U(3) XU(1) or E¢/SO(10) xSU(3) xU(1).
(1) E¢/Spin(10) XU(1). As seen in Eq. (6.17), the
third Chern character vanishes in this case, and thus
L . @ * chy(T(E¢/Spin(10) XU(1))) =0.  (7.1)
X
We thus conclude that the theory is anomaly-free. Note that
this result depends on the dimension of the space-time; we
are considering the theory in the four-dimensional space-
time. In the case of two-dimensional space-time with Weyl
fermions, we must consider

L ‘j’ * ch, (T (E¢/Spin(10) X U(1))), (7.2)
X

where ch, (T (E¢/Spin(10) XU(1))) =}(c,/4)> and ¢:
$*Xs*+E¢/Spin(10) X U(1). Because @*c¢, belongs to
H*($Xs) = Hs’) @ H(s*) @ H(s*) @ H*(s%),
(@*c,)’eH?*(s*) @ H?(s*)isnonzeroforsomeg (Ref. 16)
and thus the theory is anomalous. However, this is not the
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physically interesting case, because in two dimensions N = 1
supersymmetry does not require a complex structure nor
does it usually involve the Weyl fermion, but it involves Ma-
jorana ones. This situation is also unaltered in the following
cases.

(2) E,/SU(5)XSU(3)XU(1). Recall that the ith
clementary symmetric polynomials S, ( y,,....ys) and
S; (ey,..., e3) correspond to the ith Chern classes of the prin-
cipal SU(5) [and SU(3)] bundles over E,/SU(5) XSU(3)
X U( 1), which we simply denote as

3
2 R=cfSUG), o T &=ciSU))
=1

a=1
i ¥: =cy(SU(S),
and N
— 2 e; = c,(SU(3)). (7.3)
Therc.ef(;;al

ch,; (T (E,/SU(5) X SU(3) X U(1)))
= 18(c,/75)c,(SU(5)) — § c5(SU(5)) + 4e(SU(3))

+20(c,/75)c,(SU(3)) + % (¢,/75)%, mod ;.
(7.4)

Wehereconsxderamaptp P2° @1 SZXs“—>E7/SU(5)
XSU(3) XU(1) such that ,: s> Xs*—s° and @,: s*~E,/
SU(5) XSU(3) X U(1) and they belong to nonzero sectors
of the homotopy classes'’

[?Xs% 5%} =2,
(7.5
[s5, E,/SU(5) XSU(3) XU(1)]

=75 (SU5) XSUB)XU())=Z & Z.

Then ¢%c,(eH*(s°))=0, @2 $¢, (SU(3)), and q: : c,
(SU(5)) (€H*(s*))=0, but @¥c; (SU(3)) and @3 c3
(SU(5))are nonzero elements of H 5(s°). By the pullback ¢ ¥
they still remain to be nonzero and belong to H 8(s* X 5*). We
thus obtain

@ * chy(T(E,/SU(5) XSU(3) XU(1)))

=910 —1cSUM)) +4cSU5))) #0,

(7.6)

leading to the conclusion that the theory is anomalous.

This result is unchanged in the two-dimensional space-
time.

(3) Eg/SO(10) XSU(3) XU(1). The relevant elemen-
tary symmetric polynomials correspond to the characteristic
classes as follows:

— z el =¢,(SU(3)),

i=1

3
-;- 3. i =elSU),
and

5
Y y2 =pi(S0(10)), (1.7)
a=1
where p,(SO(10)) is the first-Pontryagin class of the princi-
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pal SO(10) bundle over E¢/SO(10) XSU(3) X U(1). The
third Chern character is then written by

chy (T (E¢/SO(10) X SU(3) X U(1)))
= 18(c,/168) p,(SO(10)) + ] 5(SU(3))

+ 40(c,/168)c,(SU(3)) + 152(c,/168)3,
mod I ;*
and the pullback by é * is given by
@ * ch,(T(Eg/SO(10) X SU(3) X U(1)))
=19 * SUQDEH (X",

where ¢> q)z ° q:l is the similar mapping to the case of E,/
SU(5) XSU(3) X U(1); other terms are trivialized by ¢ 3.
Thus there exist ¢ such that

@ * chy(T(Eg/SO(10) XSU(3) XU(1))) #0,  (7.9)

leading to the fact that the theory is anomalous. It is also
anomalous in the case of two-dimensional space-time.

These are the conclusions. Our method of evaluating
anomalies is also applicable’® to other supersymmetric non-
linear o models based on, in general, Kihlerian coset spaces
of the type G /H.

Note that our results are the same as those of non-Abe-
lian anomalies in H-gauge theories. Whether this correspon-
dence is accidental or indicating that these anomalies are
related deeply is yet unknown to the authors.

Comment: Alvarez-Gaume and Ginsparg'® have shown
that G/H =Eg/Spin(10) XU(1), E,/SU(5)xSU(3)
XU(1), and Eg/SO(10) XSU(3) XU(1) models are all
“anomalous” in four-dimensional space-time because the
’t Hooft anomaly matching condition cannot be satisfied in
these models, i.e., the anomaly in the U(1) part of H is at
least nonvanishing and can never be matched by any repre-
sentation of E; (/ = 6-8), which have only an anomaly-free
representation in four-dimensional space-time. However,
our conclusion, especially that E./Spin(10) XU(1) is
anomaly-free, does not contradict with their result. Let us
clarify this point

As seen in Ref. 20, their statement is equivalent to that
Tr R 3#0 [Ris the curvature form on ¢J *T(G /H)],but this
does not necessarily mean the nonvanishing of the integra-
tion of Tr R 3 over $2X.§'%; the Chern character is evaluated
at modulo exact form.

(7.8)
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APPENDIX: ROOTS OF ES

In this Appendix we give roots of E and the definition
of a scalar product on h*, the real vector space spanned by
the simple roots. The Lie algebra of ES, €, is constructed
following Ref. 13.

Let [ be the Lie algebra of SL(9,C), ¥ the complex val-
ued antisymmetric tensor of the rank 3 in nine-dimensions,
and V* be its dual space. Thus dim. [ =81 —1=80,
dim, V=dim; V*=,C, =84, and dim. (I & V & V'*)
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= 284, which is equal to the dimension of the Lie algebra of
ES.

Now we introduce the commutation relation in the
complex vector spgcel & ¥V o V'*. Let

10
E;=|: 0O ith row

o : 0

Jjth column

ex,and e’ bethebaseof |, Vand V *, respectively. Here each
index runs from 1 to 9 and e’ (e, ) = 3! €% .

5 &, &,
ek, =det|8f &5 & (A1)
s & o

For X=2X, E; with 3, X;, =0, v=} Zvy ey, and
v* = JI Zv¥* ¥, commutation relations

[X,v]: [ V-V,
[X,v*]: [ @ V*>SVH,
[v,v']: Ve V-V (A2)
[v*,v*]: V* e V*>V,
[v,v*]: Ve V*s],
are defined as follows:
[X, v]ge =Xy v + Xy Vi + X vy
[X, v*]% = — X, v"* — X, v™ — X, oY,
[v, V']%P = ¢l ikimnopa Vg vllmn’ (A3)

[v*, v*'],py = 1/ (18X 6%)€; jktmnopg V™ V™",
kil I;
[v, v*]; = 4V vay — § 8, V™" vy,

The Cartan subalgebra §< of & €is equal to that of [ and each
heh€ is written by using the coordinates of maximal torus:

h =diag(2m/ — 1 x,,..., 2m/ — 1 xy),

9
Y x;, =0, xC.

i=1
() =H° N ¥ is simply given by replacing x,eC with x;eR.)
Defining the mapping 4;: §°—C by 4,(h) =x, (the 4,’s
are often written by x; in this recognition),

9 2
h=z2ﬂ\/—l/li(h)EH: z’ll=o

i=1 i=1

Note that the A,’s are real valued on b (4,€h*). Since
(4 E;] =21 (4; —4)(h) E; (4,
[Bew] =2mV =T (A + 4 +4,) (k) ey,

and (B, e™] = —20V =1 (4, +4; + ;) (h) e,

all roots of &€ are
+ 4 —4) (I<i<j<9),

+ (’li +/1j +/1k) (1<i<j<k<9):

and simple roots are
A=A (ULIKD),

Ag+ A+ As,

(A4)

(AS)

(A6)

(A7)

(A8)
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where we omitted 27 — 1.
The scalar product ( , ) on h* is derived from the Kill-
ing form x: ¥€ ® Y~ C. Here x is defined by
x(A4, B) =Tr{(ad 4) (ad B)) for each 4, BeF€.
(A9)
This formula is reduced to
x(e”™, e,,,) = —20€%,,.,,
(A10)
K(Eg” E,,) = 605, 6jk’

otherwise zero.
For each ach*, there exists a unique T, €)) satisfying the con-
dition

a(h) =«x(T,, h), forany heb. (All)
Then the scalar product (a, b) is defined by

(a,b) =«(T,,T,), a,beh*. (A12)
For example,

2ry—1 Th—2, =% (Bu — Ey) (#)),

(A = A5 A —A) = (120 = 1),
and

2ry—1 T4‘+,11+,1k =&(E; + Ey + E —115),

(A13)

A+ 4 +A04 +4 +4) = (1727 = 1)% 4,
where 1, is the unit matrix of 9X9.
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Gauge theory of a group of diffeomorphisms. ll. The conformal and de Sitter
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The extension of Hehl’s Poincaré gauge theory to more general groups that include space-time
diffeomorphisms is worked out for two particular examples, one corresponding to the action of
the conformal group on Minkowski space, and the other to the action of the de Sitter group on
de Sitter space, and the effect of these groups on physical fields.

I. INTRODUCTION

Inarecent work' (which we shall refer to as I) a scheme
was developed for gauging a group that contains a group of
space-time diffeomorphisms as well as (possibly), internal
symmetry groups.

Let G be an (N + M)-parameter Lie group possessing
an N-parameter subgroup H. Introduce, on an M-dimen-
sional base manifold, a connection I'; associated with the
group G, considered as a Yang-Mills group, and a set of
physical fields ¢ belonging to a linear representation of H.
Under the simultaneous action of an infinitesimal diffeomor-
phism x’ -x’ — &' on the base space, and an infinitesimal
(local) action of H, we have

oI, =¢/9T,+T;0,£’+ &+ [EL,], (1.1)
Sy=£&/9y+ &, (1.2)

where € is an infinitesimal element of the Lie algebra of H,

dependent on position on the base manifold. Of course, in

(1.2) the representation of H provided by ¢ is implied.
When the curvature

G, =4I, — T — [T, I}] (1.3)

vanishes, those transformations (1.1) and (1.2) that leave
invariant a particular solution T'; (x) of (1.3) constitute an
(N + M)-parameter group of diffeomorphisms on the base
space, isomorphic to G. The finite-dimensional linear repre-
sentation of H corresponding to the action of H on # is there-
by extended to the action on ¥ of a group G of diffeomor-
phisms.

The purpose of the present work is to illustrate this idea
by two particularly interesting special cases.

When G = SO (4,2), we obtain the action of the confor-
mal group on Minkowski space together with the appropri-
ate transformation laws for physical fields under the action
of the conformal group.? When G = SO(4,1) we obtain the
action of the de Sitter group on de Sitter space-time together
with the appropriate transformation laws for physical fields.
Equations (1.1) and (1.2) in this latter case give rise to the
basic transformation laws of Poincaré gauge theory, under
the Wigner-Inonii contraction of the de Sitter group to the
Poincaré group.

Il. THE CONFORMAL GAUGE THEORY

The commutation relations for the generators of
SO(4,2) can be displayed in the following form:
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[7arms] =0,

[7arSey ] = Nap™y — Nay g5
[Va’Kp] =2("7apA—Sup); @1
[Saﬂ»‘g;é ] = ”Bysaﬁ - ﬂaysﬂa + ”a&sﬁy - "B&Sari
[saﬁ’A] = 0’ [Sﬂﬁ’x‘r] =Kq ”ﬂ'r - KB”ay’

[A’Ka] =Ky [Ka:Kﬂ] =0,

[7g,A] =7y,

where 7,5 is the Minkowskian metric with signature

(++ + =)
The connection for SO(4,2) can be written

T, = e %mr, + F,-, (2.2)
where
Fi = iriaﬂsap + &:A + ¢,%,. (2.3)

The matrix (e; ) is assumed to be nonsingular, with inverse
(e.'), which can be regarded as the matrix of components of
a tetrad. We may employ these matrices to convert Latin
(holononic) to Greek (anholononic) indices and vice versa.
The Minkowskian metric 77,5, will be employed for raising
and lowering Latin indices.

The infinitesimal element € of the Lie algebra of H can
be written

E=1€"S,5 +EA+EK,. (2.4)
The transformation law (1.1) then has the explicit forms

5€,a=§jaje,~a+eja a]é‘j—eip(eﬁa"'apa;)’ (2'5)
8T, =49 T, + T, 3,8/ +dE+ [&T)]
—2e(EgA + £ %S 5)- (2.6)

Observe that the tetrad undergoes Lorentz rotation and dila-
tion under the action of H. Observe also that, due to the final
term in (2.6), I'; is not a connection for the group H.

At this stage it is possible to impose a metric on the base
space (space-time) in a natural way. We define the space-
time metric to be the one with respect to which the tetrad is
orthonormal:

8 = eiaejﬂ"?aﬂ~ 2.7

Under the local action of H, this metric responds according
to

og; = — 2g;- (2.8)
Thus, the subgroup of SO(4,2) generated by A can be identi-
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fied as Weyl’s group of scale transformations.

It is also possible to impose a holonomic linear connec-
tion on space-time. We introduce the generalized derivative
of the tetrad field (see I):

Die*=4d,e," + ejBF,-ﬂ" +¢,%¢;, (2.9)
and then define
T,*=e,"D;e. (2.10)

The I';* transform under space-time diffeomorphisms like
the components of a linear connection. Moreover, it is a met-
ric-compatible connection:

akgij - rkilglj - ijlgil =0.

Under the action of H, it has the transformation law
8T, =2(5%g, — 6,5, — 8,¢.). (2.12)
We now consider the limiting case with vanishing

SO(4,2) curvature:

G, =0. (2.13)

The coordinate system and H-gauge can then be chosen so

that

e*=8° T,=0. (2.14)
We then see from (2.7) that the space-time has become Min-
kowskian. In this reference system, the distinction between

Latin and Greek indices is lost and the conditions for the
transformations (1.1) to preserve the relations (2.14) are

8,6% =€, + (8,
3,6 =2(8,°¢* — 5,°¢7),
8,6=2,, 8,£%=0,

[cf. Eqs. (8.2) of I]. The integration of these equations is
straightforward. We get, successively,

§e=1c% §=2'caxa+/7a

(2.11)

(2.15)

(2.16)
€ = 2(xPc* — x°c?) + w*®,
and finally
£%=a"+ x,0™ + px* + 2x %c'x — ¢°X?, (2.17)

wherea®, p, »*#, and ¢® are constants of integration; x> and
c-x denote x*x? 77,5 and ¢* x#7),,5, respectively. We recog-
nize that the diffeomorphisms x* —x% — £* are the infinite-
simal conformal mappings on Minkowski space-time.

The transformation law (1.2) for a field ¢ becomes

Sy =£3,¢+ (S5 + EA + £ %)Y, (2.18)

with €%, €*#, £, and £* given by (2.16) and (2.17). Thus we
have precisely the transformation law of a physical field on
Minkowski space-time, under the action of infinitesimal
conformal transformations:

6¢ = [aaaa + %waﬁ(saﬁ + xa 35 - xﬁ aa)
+p(A+x9,) + %k, +2(x,A + x5S 5)
+ 2(x,x? — x%85)35) 19 (2.19)
The reverse of the procedure carried out above is to start
with the (global) action of the conformal group on Minkow-
ski space and on fields ¢ [given by (2.17) and (2.19] and
then “gauge” the group by making the parameters space-
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time dependent and introducing auxiliary fields. That is, the
conformal group can be gauged in a manner analogous to
Kibble’s** gauging of the Poincaré group. The details have
been presented elsewhere.’

lil. THE DE SITTER GAUGE THEORY

The commutation relations for the generators of
SO(4,1) can be displayed in the form

[Tassg ] = — &Sups

[ﬂ'a’sﬁa] =17GB7T‘V ‘-na‘yﬂﬁ’ (3.1)

[SapsSys ] = MaySas — NaySes + NasSpy — MpsSay-
The subgroup H, generated by the S,4, is just the Lorentz

group. The constant « is inserted so that the Poincaré group
can be regarded as a limiting case.

Introduce the connection
T, =7, +} T, %S, (3-2)
The transformation law (1.1) becomes
Se* =£713,e,% + ;% ;&7 — e,Pe,”, (3.3)
0P =69, P+ T, 8.6/ +de.”
+¢€,' T, —T,%,° (3.4)

(in which the Minkowskian metric has been used for raising
and lowering Greek indices). Observe that the tetrad is Lor-
entz rotated by the action of H and that I'";*? transforms like
a connection for the Lorentz group. We shall employ the
symbol D; to denote the corresponding covariant differenti-
ation. For example,

Dp=a¢y— 4 riuﬁsaﬂ'/’
and
D.e,* = 3d,e,% + ¢,°T 5"
The Lorentz torsion and Lorentz curvature are defined by
Fy*=Die/* — Dje/f, (3.5)
and
Fy, =01, -9, —T,T,P+T,,T,? (36)
The SO(4,1) curvature is
Gy =F;°m, + 1} (F;® + 2xe,%¢,?)S . (3.7

A holonomic metric and holonomic connection on
space-time can be constructed in a natural way from the
SO(4,1) connection coefficients. We define

8y =e€:°¢ g (3.8)
and

I*=e,*D,e. 3.9)
The connection (3,9) is metric compatible, that is,

3:8x —Ty'gn —Tu'g; =0. (3.10)
It is not, in general, symmetric:

r;*—T*=F (3.11)

Thus, the definitions (3.8) and (3.9) impose on the space-
time a U(4) structure® [in fact, as is apparent from (3.3)
and (3.4), the gauged de Sitter group and the gauged Poin-
caré group are identical].
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Now consider the limiting case in which the SO(4,1)
curvature (3.7) vanishes. The torsion then vanishes, so the
connection (3.9) becomes the Christoffel connection

e
y
The Lorentz curvature (which is now just an anholono-
mic version of the Riemann tensor constructed from g;)
does not vanish. We have

R,jkl=E7k1=l('(5,~15jk—5j16,~k)- (313)

Thus, the space-time has become a space of constant curva-
ture. We can therefore choose the coordinate system to be a
system of stereographic coordinates for which

(3.12)

gy =021y, (3.14)

o=1/[1+ (kx*/4)], x*=mn;x'x. (3.15)
We can then take the tetrad components to be

e,* = 068,” (3.16)

It is convenient from now on to convert Latin indices to
Greek indices, and vice versa, by means of 87 rather than ef".
With this understood, the Lorentz connection determined
by (3.9) and (3.12) turns out to be

I,% = kobl°xP). 3.17)

The transformations (3.3) and (3.4) that leave un-
changed these particular functional forms for the tetrad and
Lorentz connection are those with parameters £ and ¢
satisfying

3°EP — YKok xn™ —eF =0, (3.18)
and
3,6 + Y ko[8,°(£P + ¥x,) — /(£ + €x,)] =0.
(3.19)

Fortunately, we already have partial knowledge about the
solution of these equations. The diffeomorphisms that pre-
serve the de Sitter metric are the de Sitter transformations,
which, in terms of the stereographic coordinate system, have
the infinitesimal form x* »x% — £%, where

£%=xp0P + a%(1 — (kx*/4)) + (x/2)x%a"x; (3.20)
®*? and a® being the (constant) parameters of the group.
Substituting this expression into (3.18) gives

€ = 0™ + (k/2)(a°%® — aPx”). (3.21)

It is then not difficult to check that Eq. (3.19) is also satis-
fied.

Equation (1.2) now gives the transformation law for a
physical field (belonging to a representation of the Lorentz
group) under the action of an infinitesimal de Sitter trans-
formation on a de Sitter space-time:

2
8¢ = a“[(l - %-)aa + %;.c,,xﬂa,9 + %saﬁxﬁ]zp

IV. CONCLUDING REMARKS

Many attempts to construct a gauge theory of a space-
time symmetry group encounter difficulties and complica-
tions. The reader is referred to the review article of Ivanenko

(3.22)
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and Sardanashvily” and the references cited therein. The dif-
ficulties arise from attempting a too close analogy with the
pattern established by gauge theories of internal symmetries;
if the whole of a space-time group G is “gauged” in the
Yang-Mills sense, the gauged “internal translations” des-
troy the possibility of identifying the translational gauge po-
tentials with a tetrad.”® In our view, in a correct approach to
gauging a space-time symmetry G, only the subgroup H is
localized in the Yang—Mills sense; the gauged generalization
of G in our scheme consists of a local action of H together
with general diffeomorphisms [or alternatively, general co-
ordinate transformations (GCT)] on space-time M. This
viewpoint is already implicit in the de Sitter gauge theory of
MacDowell and Mansouri,® where invariance of the Lagran-
gian only under local Lorentz transformations and GCT was
imposed. The geometrical background to the MacDowell
and Mansouri de Sitter gauge theory corresponds to our
scheme [ where G is the de Sitter group or its covering group
Sp(2,2)].

That the local action of H together with general diffeo-
morphisms (or GCT) on M does indeed constitute a true
gauge theory of a space-time group G is fully justified only
when one has shown that the limiting case of “ungauged”
transformations does in fact correspond to the correct global
action of G on M and on fields in M. The purpose of this work
was to demonstrate that this is so for the conformal group,
the de Sitter group, and (by Wigner-Inénii contraction of
the de Sitter case) the Poincaré group. The “ungauged” lim-
it of Poincaré gauge theory was obtained by Hehl.® The
gauging of the affine group in accordance with our scheme
has been presented elsewhere.®

The transformation laws for the points x of M and the
matter fields ¢ on M, under the global (“ungauged™) action
of G constitute essentially a nonlinear realization of G in the
sense of Coleman, Wess, and Zumino'® or Salam and Strath-
dee.!! However, space-time itself takes the place of the Gold-
stone fields, so the usual dynamics of nonlinear realization
(Higgs mechanism, spontaneous symmetry breakdown) is
not called into play. Thus, our scheme differs radically from
that of the Poincaré and de Sitter gauge theories of Tseyt-
lin,'? in which the whole of G rather than just H acts “inter-
nally,” but the usual difficuities associated with such a
scheme are avoided by realizing the translations nonlinearly.
This nonlinear realization of G is associated with spontane-
ous symmetry breakdown, the broken symmetries being the
internal translations.

The relationship between our approach to the gauging
of space-time symmetries and that of other approaches be-
comes clearer when our scheme is expressed in the language
of fiber bundles. It is clear from our foregoing remarks that
only the subgroup H should act on the fibers, not the whole
of G (“no internal translation”). The simplest and most nat-
ural translation of our scheme into fiber bundle language
consists of expressing the gauge theory of a group G involv-
ing space-time and internal symmetries in terms of the group
manifold G; specifically, in terms of the principal fiber bun-
dle G(G /H,H) where the coset space G /H is space-time"*
(note that H, not G, is the structural group). This aspect will
be dealt with in a subsequent paper.
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An exactly soluble relativistic quantum two-fermion problem

A. O. Barut® and N. Unal®
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The two-fermion problem of quantum electrodynamics in which both particles are treated
relativistically and full spin degrees of freedom are taken into account is shown to be exactly
soluble when potentials up to order a* are kept. It is therefore a good starting point for
radiative corrections of higher order for the precision tests of QED in bound-state problems.

Recoil corrections are included to all orders.

I. INTRODUCTION

There are, to our knowledge, no examples of exactly
soluble realistic spin-} two-body problems in which both
particles are treated relativistically. We present here a case
that has been extracted from a fully covariant two-body
equation in quantum electrodynamics. It is realistic in the
sense that it gives a spectrum for the H or positronium atoms
correct up to order a* and contains moreover the recoil cor-
rections to all orders. It can therefore be used as a good
starting point for radiative corrections in the precision tests
of quantum electrodynamics for the remaining terms of the
order of a® and higher.

We shall also compare this system with the covariant
infinite-component wave equation with exactly the same
spectrum. In the latter case the composite structure of the
system is characterized algebraically by a dynamical group
rather than in terms of the parameters of the constituents as
a dynamical bound state of two particles.

Il. COVARIANT TWO-BODY EQUATION

The starting point is the covariant two-body equation
(1) (2)
(y*pyy—m)® Yy n
H) @

+y-n8(}’-p2—m2)+V(d)]¢=0, (1)

derived directly from the coupled Maxwell-Dirac equations

in a nonperturbative way by a variational principle.!
@
Here y,, and 7, are the Dirac algebras for both particles

so that Eq. (1) isa (16X 16)-spinor equation. Further n,, is
a four-vector normal to the spacelike surface associated with
the relative coordinate and ¢ - n=9"“n,,. The relativistic po-
tential ¥(d) is a function of the covariant relative distance of

the two particles d = (x - n)®> — x. For the explicit solu-
tions in this paper we shall from now on choose
n* = (1,0,0,0), whence ¥ - n = y° and d = r, the magnitude
of the relative three-vector r. The spin matrices we write
always as the direct products 4 @ B, where A4 refers to parti-
cle 1 and B to particle 2.

Equation (1) has many remarkable properties, among

tion. The dependence on the relative time drops out automat-
ically. The equation for the center of mass is?

((m/M)a, + (my/M)a,) - P4(R) = (E, — E)$(R),

(2)
whereas the relative motion is given by
[(a)y—ay) " p+Bim+Bm,+ 5,8 VeB|Y(r)
=EY(r), 3)

where E is the energy in the center of mass frame (total mass
of the system) and E, the total energy of the moving system
so that the difference (E, — E) in (2) is the relative kinetic
energy of the center of mass: M = m, + m,.

For the coupling of the spinor fields to a vector field 4,
of the form et//r“n/:A and for an effective anomalous magnet-
ic moment coupling of the form at/za,w YF* the form of the
relativistic potential has been derived. The first coupling
gives

(@

V(r) = (ee/)V* 07, . 4)

The second potential coming from the Pauli coupling is rath-
er lengthy and since it has been given elsewhere,>* we do not
write it here but shall give its radial form later.

In the derivation of Eq. (3) from field theory there are
also self-energy terms corresponding to Lamb shift and
spontaneous emission. These are of order of a(Za)* and
higher and will be taken into account separately.

1. RADIAL EQUATIONS

For Eq. (3) we can also separate completely the radial
and angular parts.> This results in two sets of eight first-
order radial wave equations. In each set four of the eight
equations are algebraic and the other four are first-order
differential equations. Eliminating some of the components
of the wave functions we arrive for the first set at the follow-
ing two coupled second-order equations (including Pauli

terms):
Vive [Ysy Vs qu(j+1)(1 3)]
LS4 |-sg, 2422 0SF T (04 Mgl
4V, v, * V6+ ErV, ET Vs

_2UMj(j+ l)Vsa

them the exact separability of the center of mass and relative EV,
coordinates. One then sees that it is actually a one-time equa- 1 (1 3 M2j(j+1)
Xy \g T ) T Ty Vel
rVo\E V¥, FV,
*) Permanent address: Physics Department, The University of Colorado, V.
Boulder, Colorado 80309. +MGG+1D) I —£4,
® Permanent address: Dicle University, Diyarbakir, Turkey. i Vs
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ZMIGD (1, 3 )
YT Evy, BT,
Vz MVG l (l 3 )]" }
_ 3 2+2)|8
[rEV3 tow, T\ T )0
=0, &)
VaVe Eé 2Mj(j+ 1) ( 3 )]3
{4V2 v, -7, 7 vy, \ETV,

UM+ Vs s 1 (1 3)
— _ ._.+....__.
v, V VA \E 'V,

24y s
MG Val(mo) —MGGFD

AV, V2
xl_Je g Yo 2AMjG+D (1, 3
{ B, w. BV, \ET V.
R XA
3_ a_
+[rV5V2 MV, PV \E (ri2)
6)

where the following abbreviations have been used:
2
Vin=sE4+ — - —-—2_

2 Lo 2
V2(r)—E+£—-Am 4j(j+1) 4a,a2__/1_

E PV, P E*’

4a Am? 4j(j+1) 94?2
V.(r)=E + — — _ — ,
I A< R 17
V.iry=F ——— — |
4" V. ME—2a/r)
Vs(’)—E+£+ 8"’;"2
4%+ 1) (1 3 )
V=WV, — —————" | =+ —]|,
() 2¥s3 ; E+ v
and
AM + rAm
d,=d, + ———,
+ =0, % 2B .
% IAM TAm
1.1 )
* + ; 27V, 22(E—2a/r)
Further
A=ea,+ea, T=ea,—ea,. 9

We are interested in the solutions of Eq. (5). They are rather
complicated. However, if we consider some of the small
terms (which are, in the electromagnetic problem, of order
a® and smaller) as perturbations, we have found that these
coupled equations are exactly soluble.

In order to motivate the method of solution and to inter-
pret the angular momentum quantum numbers, we begin
with a much simpler case, namely the radial equations of two
relativistic free particles in the center of mass frame. Even
this case is not trivial in this form> and provides us actually
the tools to solve the case with interactions.

IV.SOLUTIONS OF THE RADIAL EQUATIONS FOR TWO
RELATIVISTIC FREE PARTICLES
First we set all the coupling constants equal to zero:

a=0, A=0, r=0, aa,=0. (10)
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Then Eqgs. (5) and (6) become

L (M) (p—am) D g
- jG+n/we ]
E = amdy/a—jG+ D77 )
2 2
-—2—‘,—5m[£_4£1
1
G Am2>/4—j(j+1)/r2}('"°)‘°' (1n)

1 M’)(E—Amz) JU+D+2 .,
—|E —— —
{4( E E z 9

_ G+ 10/mP }( )
(B~ Am?)/a—j(j+ /R ) e
2M — E? — Am?

=z n{=——="
=Nk ){ -

1
X EE—am/a— i+ DR ](mz) =0 a»
The only difference between Eqs. (11) and (12) is the term
(— (2/7*) (rvy)) in the first part of the second equation. The
other terms are completely symmetrical. In the dimension-
less units these equations can be written as
a, l/( p)

. . . » 3
[a§+1_1(1+1) 2%(j+)/p

PP -G+ D/
20 3
—ez—j(j/f-l)/pz g(p) =0, (13)
Py e e 3
g2 414U+ +2 %G+ D/p a]
[ o P’ e—jj+1)/p* * &(p)
2a/p®
- =0, 14
=i+ P (14
with
p=kr,
4k*=(E>— M?)(E*— Am*)/E?,

where k has the meaning of momentum in the center of mass
frame when E is the center of mass energy

&2 E*—Am?> _ E?

= T B a=e’M /E
Sp)=pu,(p), g(p)=pvo(p).
We note the following.

(i) Except the coupling terms and the

=2%(j+ D/’

e—jlji+/p* *
terms these are the equations for the spherical Bessel func-
tions ( pj; ( p)).

(ii) Although the Bessel differential equations have sin-
gularitiesatp = 0andp = o, Egs. (13) and (14) have thus
more singularities at p = + €/Yj(j + 1) . These additional
singularities are artificial, since the original first-order equa-
tions have only the two singularities at p =0 and p = .
The additional singularities have been introduced in the pro-
cess of going from the first-order differential equations to
second-order differential equations. For this reason we
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search a regular solution of Egs. (13) and (14)
atp = + &/j(j+ 1). Now we try a solution of Egs. (13)
and (14) in the form of a series of spherical Bessel functions
(times p). These are

f(P) = p Z Anjn+s(p) y
n=0

g(P)= z ‘ann+s(p)'
n=0

The first and second derivations of f( p) and g( p) are

970 = § A ivestp)

i ” 1(1+ 1) ((n +s+D(n+s+2)—jj+1) .
<o P 2(n+5)+1

-g-l2 [e’((n+s)(n +s+1) —j(j+ DM, _Zabn]jn+s] =0,

i [[ J(J+ 1) ((n+s+ D(n4+s+2)—jj+ 1),
= P 2(n+s) +1

+?[€2((n +8)(n+s+1)—j(j+1) -2)B, —ZaAn]j,.“] =0.

For n = 0, these equations give the following condition:
_JG+1) s+ 1D(s+2)

P’ 25 +1

The solutiuon of these individual equations gives

s=j—1

or s=j,

.]n+s 1 +

.]n+s 1 +

J(J+1) I[A} _

+ L+ M)y,

2(n+s)+1
—(s+n+1)jn+s+|)]y (15)
Afip)=0p 20‘4"( (n +s)(n+s+l)) e
(16)

and similar expressions for g( p). Inserting these relations
into Eqgs. (13) and (14) we obtain

(n+S)(n+s—1)—J(J+1)j )A ]
2(n+S)+1 n+s+1

an
(n+S)(n+s—l)—J(J+1)] )B ]
2(n+s)+l n+s+1
(18)
(19)
(20)

with A,7#0; B,#0. We choose the positive one: s =j — 1. In order to get the recursion relations for the coefficients we
eliminate the (1/p)-term in the first part of Eqs. (17) and (18). This can be done by using the following functional relations of

spherical Bessel functions

1, . ,
—Jic1(p) = Ui—2(p) +ii(p)] . (21)
P 2l—-1
By inserting this into Eqs. (17) and (18) we find the following recursion relations:
—j(j+l)[ (ntH(n+5+2)) ]An+4+ 1 ((”+2)(f'+3+21)
Rn+4+) —1)2(n+j+4)—3) 2(n+j+2)—1\ 2(n+j+2)-3
n(n+2j+1) (n=2)(n+2j-1) A]
2(n+j+2)+1 2n+j+DRR+H-1) "
+[e’((n+j+1)(n+j+2) —j(j+1))A,.+z—2aBn+z]=0. (22)
. (n+4)(n+2j+5) 1 (n+2)(n+2j+3)  n(rn+2j+1)
—](1+1) s . n44 + . - . Bn+2
2(n 4+ + 7)(2(n +1) +5) 2(n+7)+3 2(n+j) +1 2(n+7)+5
(n—2)(n+2j— ] , , U
+[—2a4, , +E((n+j+Dr+j+2)—j(j+1)—2)B,, ,]=0
Bln 70+ fatn 2y o]+ [ 20a e ra]
(23)
r
Starting from n = — 2, with4_,=B_, =0, wethenob- _ @ ( _J+1 ) j+1
tain the following relations between 4,, B,, A,, and B j Ao +|€ 2j+1 B, + 2j+1 B, =0, (240)
j+1 ( j+1 )A aBo J a j
* 4+ +2e 0, (242) B A(—])B=.
(‘62_. : )Az'— . B, + .j A,=0, (24b)  The determinant of the coefficients of Eq. (24) is zero. So it
2j+1 ji+1 2j+1 has a nontrivial solution given by

3057 J. Math. Phys., Vol. 27, No. 12, December 1986

A. O. Barut and N. Unal 3057



A, = [(1 —522f+ I)AO_E_I_ aB ] ,
j+1 j+1
y+1 2j+1
B=[—-.————aA +(1—4s2 )B]
2 ](j+ l) 0 ] (]
Going back to the recursion relations (22) and (24)
with » = 0 and the solution given by (25) we get
A4 = B4 = 0 .
Next for n = 2 we obtain
A6=B6=0’
This means that

(25)

Ay, s=B,,  ,, for all n50.

Hence the solutions of the coupled differential Egs. (13) and
(14) are

SUP) =Aoji_1(P) +42jj i (P, (26)

g(p) =Boji_1(p) +Bjj11(p), 27
where the relation between 4,, B, and 4,, B, is given in Eq.
(25).

Physically we see that the components ( pu,) and ( pv,)
of our wave functions in Eqs. (11) and (12) represent states
that are superpositions of two angular momenta / =j + 1
and/=j— 1.

The spectrum is given by

E?=2k*+m}
+m; + 20k +

k2(m? +mi3) +mi m:.

V. INTERACTING PARTICLES

In this section we discuss a second limit of Egs. (5) and
(6). This limit is obtained by expanding the potentials as a
power series of a/r and taking the terms up to the fifth power
of a. In the power counting / /r is counted as . This process
gives the following set of coupled second-order differential

equations:
-2 (-2 - e 25)
4 E E r 2E
g o 2 7 s
_J(J+’12) a +33](m2)_2\/1({2+1) —
(28)
[z ) (-4 + - 25)
4 E E r 2E
. s _ 2
LA DA 52 )
_____Z‘U"{j D iy =0 (29)

Here again, the only difference between Egs. (28) and (29)
istheterm — (2/7%) (rv,) in Eq. (29). The remaining terms
are symmetrical in both equations. In the dimensionless
units these equations are

[__1_+£ I+1)
4 »p P’

+a’]f( )
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——“(;“g(p) (30)
_1.22 W+Dh+2 z]
[ i p p +d,|8(p)
_Zj(;];——fl’f<p>=o 3D
where
p=24r, (32a)
412 =(M?*—E?(E*— Am®)/E?, (32b)
M? 4 Am?
22=—‘1-(E~——————),
o = (32¢)
I+ 1) =jj+1)—a? (32d)

These equations have two singular points,p = 0andp = .
The point » = 0 is a regular singularity, while p = » is an
irregular singularity At p = « the equations simplify

f(p))
—_ 0,
( 4 i dp? )(g(p) (33)

so that the regular solution at infinity is

f(p)) — /e
. 34
(Z0)- (3#)
At p~0 the equations are
2 720
(d l(l+1))f() _.__\U(Jz‘*'l)g(p)=o, (35)
dp’ P
2
(25 - L2 2 ) gy - BIUED fi )
dp P’
(36)
We assume a powerlike behavior of the solution at the origin
f(p) (Bo) (37)
g(p)

Insertion of this ansatz into Egs. (35) and (36) gives the
following relation:

—2j(j+ DAg+(s(s—1) —I(I +1) —2)B,=0.
(38)
Hence the condition for the existence of a nontrivial solution
is

ss—1)=j(j—1) —a? (39)
r

s=i+\/l+j(j—1)—a2

SRRt el

J+y (j~1?

‘ 4

wxj — 3G _5)+ O(a*) . (40)

This s-value is in agreement with the s-value in Eq. (17) for

a = 0 case. In order to find a regular solution for all p’s we

write f({ p) and g( p) in the form
f(p) =e="pYy(p),

g(p) =e""p’z(p).

(41)
(42)
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Now instead of searching a power series solution for y( p)
and g( p) we assume a solution that is a series of confluent
hypergeometric functions. In the free-particle case we al-
ready obtained in the previous section such a two-term series
with orbital angular momentum /=j; — land/=j + 1. Ex-
cept for the term — 2/r°g( p) and the coupling terms Eqs.
(30) and (31) are the same as the Schrodinger equation for
the hydrogen atom. The Coulomb problem has the following
solutions:

R, (p)=e " p'* ' \Fi(—n+12+2p),

where F, is the confluent hypergeometric function.
For Eqs. (30) and (31) wetry again a two-term solution
with / = s and / = 5" of the form

flp) =e=??{Ayp° \[Fi( —n+525p)

(43)

+A,p" 2 Fi(—n+5+22"+4p)], (44)
g(p) = e P?[Byp* \Fi( —n+5.25;p)
+B,p° T Fi(—n+5+22" +4p)]. (45)

We shall make use of the following property of the func-
tions R, that can be proved by using the functional relations
of confluent hypergeometric functions:

d2
d—sznt(P)
d2
= 17 [e—p/2p1+1 Fi(—=n+14121+ 2;p)]
p
=(i+i+’(“;”)Rn,- (46)
4 p P

We insert (44) and (45) into (30) and (31), and, by using
(46), we obtain the following relations

p
" [ZZ—~n " (s +2)(s +:)—l(l+ 1)]A2R",H2
P P
_2_1_(‘;?-"-—1)' [BORn.s +Ban,f+2] =0, (47)
[ZZp—n+s(s-—l)—12(1+1)—2]BoRu
+[2Z—n n '+ 1)(s +2)2—1(1+1)—2]
P P
XBZRn,s'+2
2Ji(j+1
—% [AORn,s +A2Rn,s’+2] =0 (48)
If we choose
2Z=n, (49)

then the 1/p-terms drop out, and we get relations between
the coefficient of R, ; and R, . The relation between 4, and
B, are the same as Eq. (38). The relation between A4, and B,
are

(" +D(s+2) -1+ 1, —2Jj(j+1)B,=0,
—2Jj(j+ 1A,

+(+ 1D +2)—-1(I+1)-2)B,=0. (50)
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For the existence of a nontrivial solution of Eq. (50), s’ must
satisfy the following condition

(+DE+2)=0G+D0G+2)~a’. (51)
Hence the relation between 4, and B,, and 4, and B, are

A, =Vj/j+1B,. (52)
Equation (38) gives also the following solution:
CAo= —\j+ 1/jB,. (53)
Thus the final solutions of our problem are
S(p) =pur(p)
=e " [Anj+1p™- Fi( —n+s5_25_;p)
+ANjp Fil—n+s2550], (54)

g(p) =pvo(p)
=e " [Aojp* Fi( —n+5_25_;p)

+ANG+D p Fil—n+s.52550], (55)
where s_ and s, are the obtained from Egs. (39) and (51),
respectively. Finally the quantization condition (49) gives
using Eq. (32) the following energy or mass spectrum:
M? 2 2 _ 2 21-122
_ + Am + M2 _ Am [1 + g_z ]
2 2 n

E2

az —-172
=m} 4+ m? j;2m,m2(1 +—2) . (56)
n
Here the principal quantum number # is related to the radial
quantum number #, by

n=n,+1,, (57)

where /, (the nonrelativistic label of the angular momen-
tum) isequaltol, =j — 1 orl, =j + 1, for the two states we
have discussed.

The bound states in E 2 are slightly below the continuum
E?>(m, + m,)*for the ( + ) sign in the spectrum (57) and
for the ( — ) sign, slightly above the negative continuum
E*(m, — m,) If we expand Eq. (56) in powers of a and
pass to from E 2 to E we obtain

m,a®

2n*(1 4 my/m,)
m,a*
T AL+ m/m)(+1)
+_3_ ma* 1 (m}/my)a’
8 n*(1+my/my) 8 nY (1 4+ (m/m,y))?
+0(a%),

I= — 4+ GTD =&

=j—a*’/(2j+ 1) + 0", (58)
which shows that the mass spectrum agrees with the usual
QED up to order a*. But the exact expression (56) should be
used for recoil correction to all orders in a. Usually the non-
relativistic quantum number n=n, + j is used. But it is bet-
ter to keep n, and j separately for really relativistic systems,
e.g., positronium, in which / is not quite an integer. In fact
one of the interesting problems of relativistic two-body dy-

E(n)=m,+m,—
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namics is to find exact quantum numbers, besides energy and
total angular momentum J, to label the states. The usual
nonrelativistic labeling of positronium states, for example,
as 'S, 3S,,... means only that these states have these corre-
sponding values in the nonrelativistic limit.

VI. THE SECOND SET. TOTAL SPIN S=0 AND S=1
EQUATIONS

In a similar manner we treat the second set of eight radi-
al linear equations arising from Eq. (3). We eliminate half of
the components using the algebraic equations and obtain
two coupled second-order equations, namely the counter
parts of Egs. (5) and (6). The exactly soluble part of these
equations, up to order a*, are the following two uncoupled
equations:

2 2 2 2
- (- 5)+ 5 (- 25
4 E E/)"r 2E

er » 2
_1_(_1_;*%+33](ru.) =0, (59)
[i( __Aif)( _Am2)+£(2E_M_2i_é_m_2)
. e
SHIED 2 | g2 () 0. (590)

The free-particle solutibn of (59a) and (59b) are simpler
than in the first set, Egs. (26) and (27), namely

pur(p) =Apji(p),

PYo(p) =Bpj;(p) . (60)
In Eq. (59b) the factor 8 is given by
Am*—M?* M?*Am?
8 = p + 7 (61)

The solutions of (59a) and (59b), because they are uncou-
pled, can be written down immediately in terms of hydro-
genic wave functions
pu(p)=Ade "'t \Fi(—n+1+1;2142;p),
(62a)
Proo( p) = Be =+ 1 \Fi(—n+ Iy + 120+ 25 ) »
(62b)

and the spectrum has the same general form as in Eq. (56),
_ M*4+Am  M?—Am? (1 a? )""2
2 = 2 (n, +1)? '
(63)

But the range of the angular momentum / is now given by

Id+1)=j(j+1)—a? for Eq. (59) (64)
and

Id+1)=j(j+1) —a®,, for Eq. (59b).

Vii. COMPARISON WITH THE EXACTLY SOLUBLE
INFINITE-COMPONENT WAVE EQUATIONS

Infinite-component wave equations appropriate for
two-body Coulomb systems are generalizations of the origi-
nal infinite component Majorana equation.* They make use
of the dynamical group SO(4,2) rather than the Lorentz
group of the Majorana equation and account for the correct

E2

(65)
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degeneracy of states. They have been used to describe the
relativistic H-atom and hadrons, and to describe many prop-
erties of these composite systems in a relativistic way, such as
form factors and transition amplitudes in external fields.® It
is interesting that our exactly soluble models give precisely
the same spectrum as the infinite-composite wave equation
for the relativistic Coulomb problem. We thus have in the
one hand the group structure of our model, and on the other
hand, the infinite-component wave equation acquires an ex-
plicit dynamical realization in terms of constituents.
The wave equation is a generalized Dirac equation

(J*P, + K)Y(P) =0, (66)

where P, is the total momentum of the composite system,
and the current and mass operators are given by

J“ =a1F” +a2P” +a3P”F4,
K=BT,+7v.

Here I, and T, are the generators of the dynamical group
SO(4,2); P, the total momentum of the atom. The choice of
the constants®

(67)

a,=1, a,=a/2m, a3;=1/2m,, (68)
B=(m;—m})/2m,, y= —a(m®+mi)/2m
gives the spectrum

ME =m +mi £ 2mm,(1 +a2/n*)~ "2 (69)

which coincides with (56) or (63).

In fact the form of infinite-component wave equation
(66) can be inferred directly from our basic equation (1),
but the operators/, and K have a more complicated form for
Eq. (1); the simpler forms given in (67) and (68) corre-
spond to the exactly soluble part of our equation. The infi-
nite-component equation is very useful in treating further
the external interactions of our composite atom because it
treats the whole atom now as a single relativistic “particle.”

The discussion of the perturbations of order a” is given
elsewhere.”
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For a certain choice of pressure the equations of gas dynamics can be diagonalized, making it
easy to calculate some first-order conserved densities of the system. Using the Hamiltonian
structure of these equations, third-order symmetries are seen to exist by the Noether
correspondence. Such higher-order phenomena are usually associated with a linearization, but

in this case, no linearization is obvious.

I. INTRODUCTION
The equations of gas dynamics are
u, +uu, + (l/p)Px =0,
p: +pu, +up, =0, s, +us, =0,
where u,p,s are the velocity, density, and entropy, respective-

ly, of the gas. Here Pis the pressure and is a function of p and
s. When the pressure is chosen to be

P=—1/p+s,

it is shown that the above system has first-order conserved
densities, that is, functions

T(Up,5,1, P 555 )
such that

f Tdx

is independent of time for suitable solutions. Working in the
spirit of the formal variational calculus, 7'is such a function
if there is an X such that

D, T=D.X,

where D, and D, are total ¢ and x derivatives, respectively.
A symmetry for gas dynamics would be a system of
equations

u,=U, p,=R, 5,=85,

where U,R,S depend on x,t,u,p,s and derivatives of u,p,s. The
symmetry is higher order if it depends on derivatives of order
2 or more, and conserved densities with derivatives of order
1 or more are also called higher order. Finding higher-order
symmetries and conserved densities has been a recent theme
in the study of nonlinear partial differential equations ever
since the astounding success of these techniques for dealing
with the “integrable’” evolution equations, such as the KdV
equation.'~® Using the theory of noncanonical Hamiltonian
structures>™® for nonlinear partial differential equations
(which also has as its origin the integrable equations), the
higher-order conserved density leads to a higher-order sym-
metry by an application of Noether’s theorem.

In an earlier paper,'? similar work was done for the isen-
tropic (s = const) equations with pressure p”. There, a con-
served density

—3.2

T=p,/(uz —yp" %)
was found. Note that there are derivatives in the denomina-
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tor, which vanishes for simple wave solutions (wherep and »
are functionally dependent). In fact, 7 may be said to mea-
sure the “simpleness” of the solution. The conserved density
found in this paper has a similar property.

The isentropic equations are linearizable by the hodo-
graph transformation, and the existence of higher-order phe-
nomena may be blamed on this, because the linear equations
have recursion operators that produce new symmetries, pos-
sibly of higher order, from given ones. In Ref. 10, some re-
cursion operators were found that guarantee the existence of
each positive integer order. The integrable systems are also
linearizable by the inverse scattering transform and some
peoplebelieve that higher-order phenomena are always asso-
ciated with the ability to linearize. The system considered
here, however, has no obvious (to this author) linearization.

The plan of the paper is as follows. In Sec. I, it is shown
how the equations of gas dynamics, for this particular pres-
sure, may be diagonalized. Only for pressures of the form
F(—p~!' + g(s))can the diagonalization be carried out, but
only when F is the identity function can a first-order con-
served density be found. Of course, there may be pressures
for which the equations may not be diagonalized but which
have first-order conserved densities. In this case the calcula-
tions become extremely long or impossible and the existence
of higher-order phenomena is an open question. In Sec. III
conditions are given for the existence of certain first-order
conserved densities of diagonal quasilinear evolution equa-
tions in three dependent variables. In Sec. IV, the conditions
are verified for the system obtained in Sec. II. Finally, in Sec.
V, the Hamiltonian structure for gas dynamics in general is
discussed and Noether’s theorem is applied to obtain a third-
order symmetry.

Il. DIAGONALIZATION OF GAS DYNAMICS EQUATIONS
Replace t by — ¢ to write the equations as
u, =uu, + (1/p>)p, + (1/p)s,,
p: =puy +up,,

We will make a change of dependent variables: let a,b,c be
functions of u,p,s. In fact if

S, = us,.

a=u—1/p+s, b=u+1/p—s, c=s,
then the system becomes
a,=((b+c)a,, b =(a—c)b,

¢, =[(a+b)/2]e,.
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The following occurs:

a a

a u G u a, @ a\ fu p~* p™!\ [u
b) =|b, b, b p) =|b, b, b llp u 0 ) p) .
C/e C, ¢, ¢ S/ [ ¢, ¢ 0 0 u 5/ x
But it is also true that
u u, U, U:\ fa a, a, a\ " '/a
p) ={pa Po P b) =|b, b, b b
$/x 5, S S \C/x c, € G c/x
Thus, a,b,c evolve according to
a a
b) =M b) )
C/t C/x
where M is
a, a, a\ fu p=* p~N\ [0 4 4, -1
b, b, b |lp u 0 b, b, b,
¢, ¢ ¢/ \0 0 u ) c, € ¢
1 p? 1 u p2 pN\ (1 p? 1 \!
_—..(1 —-p~2 - 1) (p u 0 ) (l —p~r = 1)
0 0 1 0o o0 u 0 0 -1
1 p? 1 u p~3 p! 4 4 0
=(l A~ l) p u 0 ) p/2  —pi/2 —pz)
0 0 1 0 0 u 0 0 1
u+1/p 0 0 b+c 0 0
= 0 u—1/p 0) =| 0 a—c 0 ) .
0 0 u 0 0 (a+0)/2
Ill. CONSERVED DENSITIES FOR ADIAGONAL SYSTEM ' h,  2C, h,  2C,
A system of the form h 4-C’ h B-C’
a, = Aa,, b, =Bb, c =Cc, and

(where A,B,C are functions of a,b,c) has a conserved density
of the form

h

r-L.&,
a, b, ¢,

(where f,g,h are functions of 2,b,c) with flux
X= A_f+ Eg_ + g.
ax bx cx
when 4,B,C, f,g,h satisfy certain first-order partial differen-
tial equations. These are found by expanding D,T =D, X
and setting the coefficients of

s ax by by oo

s

’ ) b s
bx cx ax cx ax bx
to zero. There is also one remaining equation. Thus there are
seven equations

fo _ My S M
f B—A  f C-4’
8 2B, g 2B
g A—-B' g C-B’
3062 J. Math. Phys., Vol. 27, No. 12, December 1986

fA, +gB, +hC, =0.

It should be noted that obtaining these equations is relatively
easy because the system is diagonal. Solving D,T =D, X
explicitly for the first-order conserved densities of an arbi-
trary quasilinear first-order system is usually impossible.

IV. THE FIRST-ORDER CONSERVED DENSITIES
Consider the choices
A=b+c¢, C=(a+b)/2.

Note that the seventh equation disappears since 4, = B,
= C, = 0. The other six are readily solved, giving

f=a(a)(a—b—2)7?
g=B(b)(a—b—2)7?
h=y(c)(@a—b—2)7?

where a8,y are arbitrary functions of one variable. Note
that since

a—b—2c= —2/p,
Jf-8,h can also be expressed as

B=a—c,
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f=a(a)p?, g=Bb)?, h=y(c)p’.
Hence the first-order conserved densities are of the form

7= 2@  B) 7’(c))=numerator_
p( ax + bx + cx axbxcx

The denominator of T vanishes only when two of a,b,c are
functionally dependent. For example, if b and ¢ were depen-
dent then

0=b,c, —b,c,=Bb.c, —b.Cc, =(B—C)b,c,

would imply that a,b.c, =a, - 0=0. Thus, these con-
served densities measure the degree of dependence among
a,b,c.

It is easy to write 7" completely in terms of u,p,s using

ax = ux +P_2Px +sx’

bx =u, —p_sz —8xy Cx = 58x.

Two special cases are interesting. Fora =1,8= — 1, and
y=0,Tis ‘
bx —a, - 2P_2Px
pz( T ) =p’ 2 —2 2
axbx u, — (P Px +sx)

_ 2( Px )
Uy — (p77px +5,)°
The — 2 is irrelevant. Except for the minus sign in the de-
nominator, this agrees with the conserved density in Ref. 10
with ¥ = — 1, in the pressure p?, when entropy is constant.
In this paper, pressure is —p~' + s, and the difference of
signs in the pressures leads to different signs in the denomi-

nators of the conserved densities. f e =1=Fand y =0,
then T becomes

()l
p( a.b, » w2 —(p~%, +5,)°/)

which has no analog in Ref. 10. However, y = — lisactual-
ly a singular value for ¥ and the isentropic equations have
more higher-order symmetries and conserved densities for
¥ = — 1 than for general y.

V. HAMILTONIAN STRUCTURE
It can be verified using Olver’s methods!! that

u 0 Dx _Sx/p 3,,
p) ={D: O 0 9, | (pu’+e€(ps))
s/e s./p O 0 A

provides the gas dynamics equations with a nonlinear Ham-
iltonian structure. The internal energy is €(p,s) and the ki-
netic energy is } pu?, hence the Hamiltonian function is the
total energy. Expanding the above gives

u, = uu, + epppx + (eps - (l/p)es)s:ﬂ
pt =pux + upx’ st = usx'
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This shows the one-to-one correspondence between € and P
given by

€, = (1/p)P,,
These equations are compatible for any choices of € or P
since

PEys — € =P,

(Pepp): = (Peps — € )p’
for all . For the pressure used in this paper, the correspond-
ing € is 1/2p — 5. This is a potential energy term possibly
arising from electrical forces among the gas particles.
Noether’s theorem says that

u 0 D _Sx/p Eu
el=| D o o E |r
s/r \8/p O 0 E,

is a symmetry, whenever T is a conserved density. Here, the
E’s are Euler operators or variational derivatives when T'is
first order or more. The symmetry can be expressed in the
a,b,c coordinates by making a change of variables:

a 0 D —s./p\ (E,
b=l D O 0 E, |T,
c/r \s;/p O 0 E,

where J is the Jacobian matrix

a, a, a

b, b, b,

P
& ¢
Completely expanding the above is an absurdly long calcula-
tion but it is simple to obtain the highest- (third-) order

terms:

a a(a)
b) =| B(b)

C

Cs

a../a
by /b |+ lower-order terms.
0

Thus the gas dynamic equations have plenty of third-order
symmetries.
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The symplectic two-cocycle on the semidirect product Lie algebra g&(We V* o V) is shown to
be canonically related to the dual spaces of the Lie algebras (a) g&(W e (g&¥)) and (b)

g&(W e (g&V *)). This fact (a) explains the second Poisson bracket for irrotational “He and
(b) leads to a derivation of a new nonlinear Poisson bracket for rotating “He.

{. INTRODUCTION

The dynamics of the majority of conservative contin-
uous systems is governed by the elementary Hamiltonian
formalism associated with semidirect product Lie algebras
invariably of the form D, &V, where D, is the Lie algebra of
vector fields on R” (n is the dimension of the physical space),
and V is a subspace in the space of tensor fields on R”. The
only known exceptions to this experimental principle are
quantum fluids in general,' and four types of superfluid heli-
um in particular.”? The new features appearing in the Ham-
iltonian description of these exceptional systems are (A) a
symplectic form on ¥, which is a two-cocycle on D, &V, in
the cases of irrotational “He and rotating *He, and (B) in-
stead of a subspace V in D, &V, one has a non-Abelian Lie
algebra L in D, &L, in the cases of spinless *He-A4, *He-4
with spin, and general quantum fluids.

A systematic Lie algebraic analysis of various math-
ematical phenomena involved in the Hamiltonian descrip-
tion of quantum fluids is the purpose of the series of papers of
which this one is the third. In the first two papers I examined
symplectic two-cocycles on semidirect product Lie alge-
bras,* and described generalized Clebsch representations for
them.® Here I study the last unexplained observation in the
description of irrotational “He {referred to in the feature
(A) above]: the transformation from the symplectic two-
cocycle description in the space with the condensate phase
variable, into the cocycleless description in the space with
the superfluid momentum density variables.

To be more specific, let us start with the first Poisson
bracket formula for irrotational “He [formula (5) in Ref. 3]:

6H
ad, +aM,
e+, k)(aMl)
oH b‘H SH
3( )=+ 2(3,)]
+ pOi 3 Ve oy + 00k S0
6F 6F 6F ] SH )]
229 L [ el
o Pt sa T s (aM,
(1.1a)
(ﬁF_éﬂ_ﬁﬁfs_H)_ (1.1b)
ba ép bp ba
The notation used here is d, = d/dx,, where (x,,...,.x,)
are coordinates in R (n<3 as a rule);

(-),;=09(")/dx;,1<k,I<n, and the sum is taken over re-
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peated indices; M = (M,,...,M, ) is the total momentum
density of the normal flow; p is the mass density; o is the
entropy density; a is the condensate phase that defines the
curl-free superfluid velocity v*as v* = Va; 8H /6( -) denotes
the variational derivative of H with respectto ( - ); ~ means
equality modulo total derivatives (“divergences”).

The part (1.1a) of the Poisson bracket (1.1) is the natu-
ral bracket associated to the dual space of the semidirect
product Lie algebra

g(*He,,) =D, &(A°@ A"@ A?), (1.2)
with the commutator
(X £ Ba), (X f:B@)]
= ([X.X ;X(f) —X(f);
X(B) — X(B);X(@) — X(a)), (1.3)
where: A¥ = A*(R") is the C *(R")-module of differential

k-forms on R™, X,XeD, ; f,a, f,a,€A% B,BeA ™ the (Lie deriv-
ative) action of D, on A* is denoted X( - ) for XeD, and
( * )eA¥; the dual coordinates on (g(*He,,))* are M, to
dreD,,pto 1eA’ atodx, A - Adx,eA", o to 1eA°’.

The part (1.1b) of the Poisson bracket (1.1) corre-
sponds to the following two-cocycle on the Lie algebra
g(“He,,) (1.2):

o((X; f Bia), (X, f. B;a)) = —fB +BY. (1.4)
Thesecond Poisson bracket formula for irrotational “He
[equivalent to formula (9) in Ref. 3] is

I +31Mk)( 6H) +Pak(6H)

oM, 8p
SH SH
oo 8) oo 2
oF
—6;'31 6 k(P,ak +(91Pk)+-;s-——(710']

S5H S5H
P,3, +3,P
X(aM,) 6Pk[( 1% + 0 ")(51:,)

SH\] . 6F ., (8H
(5| + 55 97(5p,)
TP\ s TP\ sp,

with P = (P,,...,P, ) being superfluid momentum density:
P, =pa,, I1<k<n. (1.6)
The Poisson bracket (1.5) is the natural bracket associated

(L5)
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to the dual space of the semidirect product Lie algebra
g(*He,,)' = D, (A’ ® (D, &A?)), (L.7)
with the commutator

[(X:;Y: £),(X:3,Y: )]
=([X.X 1;:X(@) — X(a);

X+ —X +DNH) (1.8)

where X, XeD, ; a,GeA’ Y,YeD,; £, feA’ and dual coordi-
nates on [g(*He,,)']* are M, to 3,€D,, o to 1€A’, P; to
a.eD,, p to 1eA’.

It is easy to check out that the first Poisson bracket (1.1)
and the second Poisson bracket (1.5), describing the same
irrotational “He, are compatible with respect to the relation
(1.6). I can now formulate precisely the problem addressed
in this paper: What is the nature of the map (1.6) and of the
Lie algebra (1.7), and why does this map produce this Lie
algebra out of the Lie algebra (1.2) together with the sym-
plectic two-cocycle (1.4) on it? The answer, given by
Theorem 3.3, asserts, roughly speaking, that if g is a Lie
algebra acting on spaces W and ¥, then the natural Hamilto-
nian map between the symplectic space V' * @ ¥ and the dual
to the Lie algebra g&} can be extended into a Hamiltonian
map between the dual to the Lie algebra g&(We V*e V)
together with the symplectic two-cocycle on it, and the dual
to the Lie algebra g&(W e (g&¥)), with g acting on itself in
the adjoint representation. This result, incidentally, provides
the first general class of Clebsch representations ( = Hamil-
tonian maps) for semidirect products g&L with non-Abelian
L.

The paper is organized as follows: To make the presen-
tation reasonably self-contained, for the reader’s conven-
ience I summarize in the next section the basic ingredients of
the modern Hamiltonian formalism. (Details can be found
in Ref. 6, Chap. VIIL) In Sec. III, the main result of this
paper is proved (Theorem 3.3), in the spirit of paper II in
this series.® Section IV is devoted to applications. First, for-
mulas (1.6) and (1.7) for irrotational “He are shown to be a
particular instance of Theorem 3.3. Then we analyze the
case of rotating “He. This analysis shows that one needs a
complementary version of Theorem 3.3, and such a version
is then established (Theorem 4.1). Applying Theorem 4.1 to
the case of rotating “He, we find for this case a new nonlinear
Poisson bracket [ (4.27)] in the space of the physical vari-
ables.

1I. HAMILTONIAN FORMALISM

Let K be acommutative algebra. Let 3,,...,d,: K—Kben
commuting derivations. Let G be a discrete group acting by
automorphisms on K, and suppose that the actions of G and
d’s commute. Such X is called a differential-difference ring.
Let I be a countable set. Set C = K [¢{¢*], iel, geG, veZ", ,
and extend G and d’s to act on C by the rule

f,(q§xlv)) = gihsiv),

(2.1)
I*(g#V) =¥+ ", heG, pel’,,
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where

(£ =(£3d)* - (+£3d,)"

for p = (py;..., 4, ), and h(-) is the image of (-) under the
automorphism 4, heG.

Let N be a natural number or «, T a differential-differ-
ence ring. Then TV consists of column vectors with only
finite number of nonzero components. An operator E:
TN T™is a map of the form

(Ew), =Y Ei,,89*u,), E..eT, ueT®, (22)

finite sums; a bilinear operator T%:X T¥:» T™ is defined
analogously. An algebra structure on 7"V is a bilinear opera-
tor T¥XTV-TYN. The associative ring of operators
T¥- T, and the corresponding Lie algebra, are both de-
noted Diff(T").

Trivial elements in T are defined as elements from

Mm% =3 Imd, + Y ImE—#),
geG

s=1
where e is the unit element of G; we write a~b if (a — b) is
trivial.
A bilinear form on 7% is an operator w: TV X TV T.
To each bilinear form @ one uniquely associates an operator
b,: TY-T", acting by the rule

G)(X,Y) ~tho) ( Y)s
so that if

(2.3)

OX,Y) =3 00,0,80"(X,)h3"(Y)), w..€T,

then

(b,)y =8 (= 9) *oyguyn b 3" (2.4)
The form o is called symmetric (resp. skew symmetric), if
o(X,Y) ~o(YX) [resp. o(X,Y) ~ — w(Y,X)]. The form
o is symmetric (resp. skew symmetric) if and only if the
corresponding operator b,, is symmetric: (b, ) = b, [resp.
b, is skew symmetric: (b, )" = — b, ]. Recall that for an
operator E: TV T™, the adjoint operator ET:T™ T% is
uniquely defined by the equation

VE(u)~[EY(w)'u, ueT®, veT™, 2.5)
so that

(EY; = (E,)?, (2.6)
and

(@8 3") =(—=9)* g~ 'a, aeT. (2.7)

A Lie algebra structure on K% is an operator
KVXKNSKN[ , 1: X X Y—[X,Y], satisfying the follow-
ing conditions:

[X,Y]= — [Y,X] (skew symmetry); (2.8)
[X,[Y.,Z]] + c.p. =0 (Jacobi identity), 2.9)
where “c.p.” stands for “cyclic permutation”;
the properties (2.8) and (2.9) remain true under any
(differential-difference) extension X' DK, (2.10)
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A skew-symmetric form o on a Lie algebra g = K is
called a (generalized) two-cocycle on g if
o(X[Y,Z]) +cp.~0, VXY, Zeg. (2.11)

A derivation X of C over X is called evolutionary if it
commutes with the actions of G and 3°s, so that

X= zﬁa V(X,- )Efg-l-v—)—, .Y‘-: =X(q‘)’ q;: =q‘§e|0).
‘ (2.12)

The set of all evolution derivations is a Lie algebra denoted
D=(C).
Set N=|I|. The Euler-Lagrange map & = 5/6g:
C— C¥, defined by the formula
6H ) 6H a1 oH
%) =5 -2 ()
(%)= -8 3
annihilates Im & in C: §(Im &) =0, while §H /8q, is
called the variational derivative of H with respect to g;. For
XeD*'(C), HeC,

X(H)~X* oH
5q

(2.13)

(2.14)

(“formula for the first variation”), where “t* stands for
“transpose,” and

X), =X,. (2.15)

AmapI':C-D*®'(C), H—~Xy,iscalled Hamiltonian if
there exists an operator B: C¥— C " such that

- H
X, =B(%); (2.16)
{H,F}~ —{F,H} (skew symmetry), 2.17)

where the Poisson bracket {H,F} is defined as Xy, (F);
Xwan = [XuXr]; (2.18)
Properties (2.17) and (2.18) remain true for arbitrary ex-

tension K'DK.
The property (2.18) is equivalent to

{(H,{FS}} + c.p.~0, (2.18)

for any H,F,SeC’'=K'[q{¥"]. The property (2.17) is
equivalent to B being skew symmetric: BY = — B, while
(2.18) can be reduced to a set of quadratic equations on the
matrix elements of B.

Let C, =K [p#™], jeJ, geG, veZ", . A (differential-
difference) homomorphism ®: C—-C, is a homomorphism
over K that commutes with the actions of G and d°s:

D(g#M) =§3%(P,), D;:=P(g)). (2.19)

IfT: C,»D*(C,), F~Xy is a Hamiltonian structure
in the ring C,, then the map @ is called Hamiltonian (also:
“canonical”) if, for any HeC, the evolution derivations X
in Cand X4 4, in C, are ® compatible: PX, = Xy 5, P. If
B, is a Hamiltonian matrix in C; such that
X =X (p) = B,(8F /5p), then & is Hamiltonian if and
only if

&(B) = D(®)B,D(P)?, (2.20)
where

(®), =, (2.21)
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and D(®) is the Fréchet derivative of ®:

— ab, .
[D(®)]; =Dy(®) = g gda”.
An operator agd*: C— Cis called g independent (resp. ¢
linear) if aeK (resp. ifa = = a,),,¢**, a...€K). An opera-
tor is affine if it is a sum of a g-independent and a g-linear
operator. The same terminology applies to sums of opera-
tors, and to matrix operators.
Let B = B' 4 b be an affine operator: CV— C¥, with B/
being ¢ linear and b being g independent. We make K Vinto a
(differential-difference) algebra setting

7XY]~XB'(Y), (@;:=gq; XYK" (223)

Conversely, given an algebra structure on X%, (2.23) de-
fines a g-linear operator B'. The relation between affine
Hamiltonian operators and two-cocycles on Lie algebras is
one-to-one: given a Lie algebra g and a two-cocycle @ on it,
weset B=B'+ b,, with B’ defined by (2.23). Conversely,
given an affine Hamiltonian matrix B = B’ + b, the same
formula (2.23) defines a Lie algebra structure on KV while
(2.3) defines a two-cocycle w via b, = b.

(2.22)

lil. INTERIOR CLEBSCH REPRESENTATIONS

Letg = K VbeaLiealgebra, W = K™,V =K™. Let 'p:
g— Diff( W) and ?p: g— Diff( ) be two representations of g.
Representation %p: 2p(X) = —%p(X)?, Xeg, of g on
V*: = K Mis called the dual representation of gon V' * (Ref.
4, Proposition3.3). Let§, = g&(We V* o V) bethesemidi-
rect product of g with We V' * @ ¥, and let B/, be the natural
Hamiltonian matrix associated by (2.23) with the Lie alge-
bra g;:

ZQk (XY], + zci(x'vl — Y-u,),

+ X 4;(X v, — Y-u,); (3.1a)

+ Y 7 (X v — Yuy), (3.1b)
X t

~ ul BI vl
u, N, F
u Vs

in the ring
C,=K [q,‘(""’,c,?""),yj“"”,/l j(g!v)]’
1Kk<N, I<IKN,, 1< <N, (3.2)

which plays the role of the functions on “the dual space to
8, where X,Yeqg, u,v,eW, u,v,€V, u,v,cV* and
[X-( )] =PpX) ().

Let o be the symplectic two-cocycle on §,, with

0 O 0 0
00 0 0

by = oofjo 1f (3.3)
0 0ol—-1 O

B. A. Kupershmidt 3066



and let the corresponding affine Hamiltonian structure B, in
C, be defined as

B, =B +b,. (3.4)

Let § = g&(W o (g&¥)) be the semidirect product of g
with We (g&¥), and let B’ be the associated Hamiltonian
structure in the ring

C=K[g", i, pif, A7),

1Kk<N, 1<iKN,, 1<j<N,: (3.5)
S @lXY 1 + Y e (Xovy— Yuy),
+ ¥ 4, (X v, — Yuy), (3.6a)
+ Y 2 ([Xp)i — [Yx)e + [xp])
+ z/lj (xv; —y-uy); (3.6b)
X\*
A= B! v, |
x y
u U,

where X.yeg, and the rest of the notation in (3.5) and (3.6) is
the same as in (3.2) and (3.1).

To prepare the grounds for the desired Clebsch map
&:C- C,, we need the following result.

Lemma 3.1: Let p: g— Diff (T') be a representation, with
T = K™, and with

PX) s = Zpl’fg""""’ X988, pkek. 3.7
Define the map V7: T X T'—g, u Xv—u\/v, by
(uyw), = 3 A (=) (pE M v.uf).  (3.8)
Then
vp(X) (u) ~X*'(uyv), upel, Xeg. 3.9)
Proof: We have, by (3.7),
)
Q(ql) q)(cr)
bqkﬂ bqk"r
D(gy)
®(c;) b.a 0
D\Ilk
; Dy 7ﬂl 0
P(pi)
DY,
; bﬂaqt
Q4;) bag, 0
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vp(X)(u) =Y v, pig X (1 Oupl

—~ Xk —l(_a)a( k,,gvlha u(glv)). [}
Pap (]

Remark 3.2: The property (3.9) uniquely defines the
product u\/v.

Denote by 7,A€C Y two vectors with components ¥, and
A, respectively. Set T'= Vg Cy,p =?p in Lemma 3.1 and
define

¥ = (YT (3.10)

Theorem 3.3: Define a homomorphism ®: C— C, by the
formulas:

®(g) =g, Plc)=c;, OPp) =Y,
Then the map ® is Hamiltonian between the Hamiltonian
structures B=B'inCand B, = B! + b, in C,.

Proof: We have to check out the equag'ty (2.20). From
(3.11), we find the Fréchet derivative D(P) to be

(3.11)

qs ¢, 71 ’1!
D(g) /6 0 0 0
D®)=®(c)[ 0 & 0 0
®(p,\ O 0 DY, /Dy, DVY,/DA,
®4) \0 O 0 8/
(3.12)
Using (3.3) and (3.4), we write the matrix B, in the form
qx < 7’] /1_,'
qs bia ba by, ben
¢ by O 0 U (3.13)
Vi b‘l’ﬂk 0 Y 811
A‘l b/l,qk O - 6; 0
where b__ are the corresponding matrix elements of the ma-
trix B! in (3.1). Hence, for the matrix in the right-hand side
of (2.20) we obtain
q>(p1 ) ¢(/1s )
D‘I’I t b
2 b‘]k?’a(Dy ) as
DY\t
b —_*
+ ; qkla(Dla )
0 0 (3.14)
z DY, (D‘l’, )* DV,
a DYa D’i’a D}’,
DY, (DY, \'
-5 (5,)
a DA’a D?’a
(D\ll,)
0
Dy,
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To show that the matrix (3.14) equals the matrix ®(B) in
the left-hand side of (2.20), we apply each of these matrices
to the vector (Y,v,, y,v,)°, multiply the result from the left
by the row vector (X,u,,x,u4,), and then show that the result-
ing expressions differ at most by an element from Im Z.
Since ®in (3.11) actsidentically on the ¢’s, ¢’s, and A ’s, and
the left-hand sides of the row (3.1a) and the row (3.6a) are
the same, it remains to verify the following relation:

zq’(Pk)([XsJ"]k — [¥x]i + [x,5]0)

+ zﬂj(x'vz —yuy);

(3.151)
DV DY
~2Xk[qu(py') +bm( ’) ](y,) (3.152)
DV DYy
+Exk( “ b, + mk bm)(Y,) (3.15b)
DY, {D\P,) Dy, {D\I/,) ]
+Z""[ Dy, \pi,) ~ D4, \py,) |
(3.15¢)
DY DY\
+Z[xk Dy:‘ (uz,)—uzj(Dyj’) (y,)]. (3.15d)
To check (3.15), we use the following identities:
Dwk — 2 h —-1( a)a ng;g"""'”/ls gaa’ (316)
D‘l’k = Z h ~1( a)a zpll_;;g,v|h,a 7’§ glv)’ (317)
DY, \t
(X'Y)j =2( D;{k) (X)), 7rel, (3.18)
j

Y PP Xyl = Y Wi lx, yli
=Y (VA [x 1 ~A ([x,3]"7)

=Ax(yy) =y (x7)]

v,
~3 () ( >, ) (%) — X (x 7)’(1)7

AT

D\F') (y)]
D‘}’j !

DY,

DV, (DY,
~3x [ ( )"’“m,
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which is (3.15¢).

DY, \'
A X ) ~3 u,.( . ) (X,), veV, (3.19)
Dy,
with notation from Lemma 3.1. Since ¥, = (y\J1),, for-

mulas (3.16) and (3.17) follow at once from (3.8). Now,
from (3.7) we get

(X”}/)j _ 2 2pjl;; g,v|h,aX;‘h lo) 7/_5 gl
E 2 k gviho (slv) ]; 3°(X,)

3)02 k; gviho (xlv)]'r (Xk)

=S[h'(-
_E(D\Ifk

which is (3.18). At last,
A t(X'U) ='1s ng‘;g,VIh,oX;ch le) U]( glv)

~F e (
~So (

which is (3.19).
We start with (3.15d):

by (3.7)]

. a)v 2pr g.vlh,oi’ila a(Xk )

) (X)) [by (3.16)],

DYy
) = S ) 0
DY,

) () —zuzj(z‘:’l ) ()

—y'u;) [by (3.19)],

2 %
~z vu(

Ni (X vz

which is the fourth term in (3.151).
Next, for the third term in (3.151) we obtain

[by (3.9)]

(since %o is a representation)

¢
) (y) [by (3.19)]

J

DY,

v,
3.18
D, )( X) (Dy,)(yl) [by (3.18)]

B. A. Kupershmidt 3068



Further, for (3.15b), we get

DY, DY
Z"kD, bra(¥) + T % 3 *bl,.,,(Y,)

-3(3, ) (%) by g (¥)) +§_‘(
~T2 Y’[b’”"(llz:: ) * b‘“‘( DA

\II t
) (%) b;,4,(Y))

_—k—) ](xk) [since (bra)t= —boy,, (big)'= = by, ]

which equals minus the expression (3.15a) with (X, y) changed into (¥,x): and this is exactly the relation between the first
and the second term in (3.151). Thus, it remains only to compare (3.15a) with the first term in (3.151). Denote by b, (X) and

b, (X) the following vectors:
[by(X)]a = Zb'}'aqk(Xk)’ [bl (X)]a = zblaqk(xk)-

Then, we transform (3.152) as

(2 o0 (B o

~—=A(yb, (X)) = b (X)' (y7)
~(yA)Yb,(X) — (y )by (X)

~ =YX (yAN+A (X (yP))
~ =YX (yA))+7(y X))
= — ¥ ([X,y]'4)

~[X, y1'(¥VA)

and this is precisely the first term of (3.151). [ |

Remark 3.4: The reader may have wondered if the same
@ will provide a more general, non-Abelian, Clebsch map
between Lie algebras g&(W e (§&V))andg&k(We V*e V),
with a different Lie algebra  acting on Vin addition to g. The
answer appears to be negative, as may be seen from the fol-
lowing example. Take G = {e}, n=1,3 =3d,, g = D,. For
each Aek = Ker 8 |x, denote ¥, the space K ! with the fol-
lowing action of D,:

X:f>X3(f) +AfIX) =:L5(f). (3.21)
Since
L5 (f) =glXa(f) + Afa(X)]
~f[ —d(Xg) +Ag d(X)]
= ~f[X3(g) + (1-4)gd(X)],
we see that
(V)*=V,_,. (3.22)

Letustake W = {0}, ¥ = ¥, and consider V; alsoas ¥, for
some uck, with respect to the action of another copy of
g = D, (every V, is a free one-dimensional K-module). Ap-
plying the map (3.11) with

¥ =udd(y) — (1 —p)ydd), (3.23)

we can easily see that this map is Hamiltonian iff iz = A.
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(3.20)

T by (X)- (ﬁy) (90 =3 bag (X, (ﬁ:’ )’( »

[by (3.19) and (3.18)]

[since the dual representation 3p(X) =
[by (3.1b) and (3.1a)]
[by*p(Y) = — (D]

(since %p is a representation) ~A ‘([ X, y]%)

- 2p(X)T’ VXEG]

[by (3.9)] = [X,y]¥ = T ®(p,) [X, yls,

Remark 3.5: Combining our Hamiltonian map

®: C((g&(We (g&MN)*-C,((g&(We V*e )*)
with the Hamiltonian map

Cil{la&(WeVraV))*)-Cr(WoW*a V*e V)

given by Theorem 3.2 in Ref. 5, we find a genuine canonical
representation for the dual space to the Lie algebra
g&(We (g&P)).

Remark 3.6: If N = dim g<dim V' * = N, and if our map
® is injective, we can think of the Hamiltonian structure in C
as being the restriction from the Hamiltonian structure in
C,. (In the finite-dimensional case, the dual process, in the
language of manifolds, is called “reduction.”) In practice,
however, the inequality NSV, is rarely available, as we shall
see in the next two sections treating irrotational “He and
rotating *He.

IV. APPLICATIONS TO “He

We start with the case of irrotational *He first. To derive
formulas (1.5)~(1.7) for the second Poisson bracket out of
the data (1.1)-(1.4) describing the first Poisson bracket, we
set

g=D,, W=A% V=A% V*=A" 4.1
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The action of D, on ¥ = A°is given by
p(X)(u)—_—szu’k, X=2Xkl9kED,,.
Hence, by (3.9)

v'p(X) (u) - z vXku'k = sz (vu’k ),

if we adjust our notation to

=M, c=¢=0 P.=P, y=a A=p.

(4.5)
Formula (4.4) is exactly (dual to) the map (1.6). By
Theorem 3.3, the Hamiltonian map ® relates the Hamilto-
nian structure on the dual space to the Lie algebra
g&(Weo (g&V)) =D, &(A’® (D, &A®)) [which is the Lie

which means algebra g(*He,,, )’ in (1.7)] to the Hamiltonian structure on
the dual to the Lie algebra q&(WaeV*eVl)
(UGV)i = vu . (42) =D, &(A°®A"®A°) [which is the Lie algebra g(*He,, )
] in (1.2)] accompanied by the symplectic two-cocycle on
In particular, by (3.10), V*o V= A"e A’ [which coincides with (1.4) ]. The reader
v, = A). = Av,, 43 can see how easily all the complexities apparent at the first
k= (VA Ve 4.3 encounter with the second Poisson structure of irrotational
and the map (3.11) becomes “He, disappear at once when viewed from the general point
of view provided by Theorem 3.3.
PM)=M,, P(o)=0, ®WB)=pa,, P(p)=p, The case of rotating “He is more instructive. The Pois-
(4.4)  son bracket in this case [formula (14) in Ref. 3] is
J3

oF oH oH oH oH

HF}~ M3, + M, da, —a,)(2E) 4 pa (—) —a,

{#,F} [6Mk[( 1% + 0, k)(aM,)+( 19 al,k)(aa’)+P & o a, b

6F 6F 6F
a —3, —_— —_— .
+[5ak (ar; +a,0,) + % 1P+5a a”](&M,) (4.6al)
6F 8H 6F 6H )
—_—— 4.6a

+ (5p ba ba bp (4.6a2)
+ :F [(Vlak +alﬂ'k)('5_11—) +Uak(§£)] +'5£alo'(6H) (4.6b)

om, oo

Tk

where new notations, in addition to the nonrotating *He
case, are 7 is the relative normal momentum density; and a is
the vorticial part of the superfluid velocity v°, which,
for rotating “He, is not curl-free anymore, i.e., v = a — Va.

The bracket (4.6) splits off in two separate brackets:
(4.6a) and (4.6b). The bracket (4.6b) is the natural bracket
on the semidirect product Lie algebra

d,=D,&A", 4.7)
and we shall not need this part for some time. The bracket
(4.6a) is of the form B, = B! (§,) + b, where B* (§,), given
by (4.6al), is naturally associated with the semidirect prod-
uct Lie algebra

§,=D,&(A" e A0 A"), (4.8)
while b, given by (4.6a2), is the symplectic two-cocycle on
the A®@ A" part of §,. [ Notice the transposition of A" and
A%in contrast to the nonrotating *He case, which is responsi-
ble for formulas (1.1b) and (4.6a2) having opposite signs. ]

From Theorem 3.3 we conclude that there exists a sec-
ond Poisson bracket description of rotating “He. Let us find
it. From (4.8) we see that

W=A""! V=A" V*=A° (4.9)
and that the sign of the two-cocycle (4.6 a2) is correct, i.e., it

g=D,,
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oo

e )
677'1

I

is the same as in (3.3). The actionof g=D, on ¥ = A" is

(E th?k)(w d"x) =Y (X,0), d"x,

d"x:=dx, A+ Ndx,. (4.10)
Hence, by (3.9),

vp(X)(u) = 2 v(Xpu) ~ — sz(uv,k). (4.11)
Thus

(ugv), = —uv,, (4.12)
so that

¥V, =(WA = —¥A,. (4.13)
Therefore, the map (3.11) becomes

(M) =M,, P(g)=a,

P(pe) = —pa,, Pla)=a, (4.14)
with the identification

@G =M, ¢ =a, y=p, A=a. (4.15)

However, (4.14) is not what we would like to have, since we
want to exchange a for p keeping the density p intact, and not
the other way around. The reason for this misfortune is
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clear: our Theorem 3.3 exchanges V' * for g while we would
like instead to exchange ¥ for g or, equivalently, tobe able to
change the sign in the symplectic two-cocycle (3.3). The
remedy, then, is equally clear.

Theorem 4.1: Let

C' =K [¢i,c(*™, pif” y{] (4.16)
serve the Lie algebra
7 =g&We (g&¥")), (4.17)

and let the Hamiltonian matrix B’ = B in C’ be associated
by (2.23) with g":

SalX Y]+ Y X v, —Y u),

+Y 7 (X 03— Y uy); (4.18a)
+2Pk([X»V]k — [¥x1e + [xp1k)
+ Y ¥ (xv3 -y uy); (4.18b)
X t
N Bt B’ Uy
x y
u Us
_l
®(q)) ®(c,)
bqkql bchr
D(q)
®(c,) b, 0
DYy
z D,yk b?’dql 0
®(p.) ¢
DY,
TEpa, b
(7)) by g 0

Again, applying (B ') from the left-hand side of (2.20) and
the matrix (4.21) from the right-hand side of (2.20) to the
vector ( Y,v,,0,v;), then multiplying the result from the left
by the row vector (X,u,,x,u5), using (4.18) and the already
proved formula (3.15), we are left with the following rela-
tion to check out:

> ¥ (xvs—p - uy);

DY DY
~E[ —X -3,'1—"-(03,) +“31(D,1')(y:)]- (4.22)
s J
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with X,Y,x,yeg, u,,v,€W, usv,€V*. In the notation of
Theorem 3.3, define the map ®: C' - C, by
(p(C,) = C,-,

D(gx) = grs D(p) =Yy,

(4.19)

q)(y]) =7/j, l<u<N, l<i<N1, 1<J<N2'

Then the map ¢ is Hamiltonian.
Proof: We follow the Proof of Theorem 3.1. To check
(2.20), we first find

q.v ¢, YI A’ I

®q.) /f6, O 0 0
p@ =20 & 0 4.20)
)= DY, DY, 4
P(p} 0O O
Dy, DA,
o) \0 0 & 0

Using B, written in the form (3.13), for the right-hand side
of (2.20) we obtain

q’(pl ) (p(ys )
T
Z bqkra (_27&.) bqkn
DY\t
+ Z bqﬂa(Dlia’)
0 0 (4.21)
DY, (DY, \! _ Dy,
z Dy, \DA, DA,
= DY, (D\II, )*
) D'{'a DYG
(D\[l, )* 0

M
This relation can be verified as follows:

S¥(x-vs—y-us);

=y(x v3—y-u)~—(x -7+ @ ¥)u,,
[taking the adjoint representation to >p]

Dy, \!
= —Zv:;j( D/ijk) (xk)
DY, \t
+Z“sj( ") () [by (3.18)]

DA,
DYy DY, \t
~—2xk( D,i: )(v3j)+zu3j( DX:) (yk)’
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which is the right-hand side of (4.22). |

Now we are in a position to obtain the correct form of
the second Poisson structure for rotating “He. Applying the
map ® from (4.19), we get, using computations (4.10)-
(4.13),

‘D(Mk) =Mk,
O(p) = — P

®(a;) =a;,

4.23
O(p) (4.23)

SH
M3, +a,M
[( 1% ¥ ’ k)(SM,

(#F~2 B

k

6H O6F
()|
+ AP0 8p + ba,

(ay; +a,d;)

) + (d1a, —ay, )(‘gﬂ

a,

with the identification (4.15). Hence, we obtain the natural
Hamiltonian structure associated, by Theorem 4.1, with the
Lie algebra

[D,&A" o (D,&A%)] ® [D,&A"], (4.24)
the second summand in the square brackets being the un-

changed Lie algebra g, from (4.7). The Poisson bracket as-
sociated with (4.24) is

) + (P19k + 91ps )(é-H-)
op

6F

6H
J. +90 —33
e + 91D ) + 5 P ](5M1)

F
- [(p,ak +0p0(35) + pa, (‘SH)] +5-an(3) (4.250)
p; 8p ép " \op,
oF 6H 6H oF oH
3 +3 ( ) 3 ( )] ) ,
+ émy [(771 , ) om, + % oo s o &m, (4.250)
Since the superfluid velocity v* equals a — Va, the corresponding superfluid momentum density P is given by
Py =pay + ps (4.26)
so that

O(P,) =pa, + P(p.) = pay

—pa by (423)] =p(a, —a,) =pv;.

Therefore, to get the second Poisson bracket for rotating “He, we have to make an invertible change of variables P = pa + p,

resulting [by formula (2.20)] in the desired expression

6H SH SH
ak + ale)((SMl) + (a’ak - alk)(aa,) + (Plak + aIPk)(-a?l)
+Pak(5p )] 5 2, (akl +a,0, o +9,P) + —alp](CSM,) (4.27a)
6H SH OF 6H oF O6H
3, +9,P 3 ( )] OF 5 (—) oH 4270’
k* ")(6P,)+p 501 T3 “P\sp,) T s, PO T %) 5, (4.27')
oF 9 + az”k)(aﬂ) + ak(éH)] + -é—F—aIU(‘SH). (4.27b)
677'1 So So 61T,

The bracket (4.27) is no longer linear, having the qua-
dratic term (4.272’) in it.
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